cylindric skew schur functions university of minnesota
play

Cylindric Skew Schur Functions University of Minnesota Combinatorics - PowerPoint PPT Presentation

Cylindric Skew Schur Functions University of Minnesota Combinatorics Seminar 5 November 2004 Peter McNamara LaCIM, UQM Slides and preprint available from www.lacim.uqam.ca/~mcnamara . p.1/23 Schur functions Partition = ( 1 ,


  1. Cylindric Skew Schur Functions University of Minnesota Combinatorics Seminar 5 November 2004 Peter McNamara LaCIM, UQÀM Slides and preprint available from www.lacim.uqam.ca/~mcnamara . – p.1/23

  2. Schur functions • Partition λ = ( λ 1 , λ 2 , . . . , λ l ) . • Example: (4 , 4 , 3 , 1) . – p.2/23

  3. Schur functions • Partition λ = ( λ 1 , λ 2 , . . . , λ l ) . 7 • Example: (4 , 4 , 3 , 1) 5 6 6 4 4 4 9 • Semistandard Young tableau 1 3 3 4 (SSYT) Schur function s λ in the variables x = ( x 1 , x 2 , . . . ) defined by x #1 ′ s in T x #2 ′ s in T x T = � � s λ ( x ) = · · · . 1 2 SSYT T SSYT T s 4431 ( x ) = x 1 x 2 3 x 4 4 x 5 x 2 6 x 7 x 9 + · · · . . – p.2/23

  4. Skew Schur functions • Partition λ = ( λ 1 , λ 2 , . . . , λ l ) . • µ fits inside λ : form λ/µ . 7 • Example: (4 , 4 , 3 , 1) / (3 , 1) 5 6 6 4 4 9 • Semistandard Young tableau 4 (SSYT) Skew Schur function s λ/µ in the variables x = ( x 1 , x 2 , . . . ) defined by x #1 ′ s in T x #2 ′ s in T x T = � � s λ/µ ( x ) = · · · . 1 2 SSYT T SSYT T s 4431 ( x ) = x 1 x 2 3 x 4 4 x 5 x 2 6 x 7 x 9 + · · · . . – p.2/23

  5. Do we care? For Schur! • Schur functions are symmetric functions • Schur functions s λ form a basis for the symmetric functions. • Arise in: representation theory of the symmetric group S n . • They are the characters of the irreducible representations of GL( n, C ) . • Correspond to Schubert classes in H ∗ (Gr kn ) . . – p.3/23

  6. For skew Schur? • Skew Schur functions are symmetric functions c ν � s λ/µ ( x ) = λµ s ν ( x ) . ν λµ : Littlewood-Richardson coefficients c ν • Since c ν λµ ≥ 0 , they are Schur-positive . s 4431 / 31 = s 44 + 2 s 431 + s 422 + s 4211 + s 332 + s 3311 . • Schur-positive symmetric functions are significant in the representation theory of S n . . – p.4/23

  7. Cylindric skew Schur functions • Infinite skew shape C • Invariant under translation • Identify ( x, y ) and k ( x − n + k, y + k ) . n−k . – p.5/23

  8. Cylindric skew Schur functions • Infinite skew shape C 6 6 4 4 9 • Invariant under 1 3 3 5 6 6 2 4 4 4 9 translation 1 3 3 5 6 6 2 4 4 4 9 • Identify ( x, y ) and k 1 3 3 5 ( x − n + k, y + k ) . 2 4 n−k • Entries weakly increasing in each row Strictly increasing up each column • Alternatively: SSYT with relations between entries in first and last columns x #1 ′ s in T x #2 ′ s in T x T = � � s C ( x ) = · · · . 1 2 T T • s C is a symmetric function . – p.5/23

  9. Cylindric skew Schur functions E XAMPLE k n−k • Gessel,Krattenthaler: “Cylindric Partitions” • Bertram, Ciocan-Fontanine, Fulton: “Quantum Multiplication of Schur Polynomials” • Postnikov: “Affine Approach to Quantum Schubert Calculus” math.CO/0205165 • Stanley: “Recent Developments in Algebraic Combinatorics” math.CO/0211114 . – p.6/23

  10. Motivation 1: P -partitions and an old conjecture of Stanley . – p.7/23

  11. Motivation 1: P -partitions and an old conjecture of Stanley 5 5 1 P : partially ordered set 2 3 2 3 (poset) 4 2 ω : P → { 1 , 2 , . . . , | P |} 2 2 bijective labelling 3 D EFINITION (R. Stanley) Given a labelled poset ( P, ω ) , a ( P, ω ) -partition is a map f : P → P with the following properties: • f is order-preserving : If x ≤ y in P then f ( x ) ≤ f ( y ) • If x ⋖ y in P and ω ( x ) > ω ( y ) then f ( x ) < f ( y ) . – p.7/23

  12. Motivation 1: P -partitions and an old conjecture of Stanley 5 5 1 P : partially ordered set 2 3 2 3 (poset) 4 2 ω : P → { 1 , 2 , . . . , | P |} 2 2 bijective labelling 3 D EFINITION (R. Stanley) Given a labelled poset ( P, ω ) , a ( P, ω ) -partition is a map f : P → P with the following properties: • f is order-preserving : If x ≤ y in P then f ( x ) ≤ f ( y ) • If x ⋖ y in P and ω ( x ) > ω ( y ) then f ( x ) < f ( y ) . – p.7/23

  13. Motivation 1: P -partitions and an old conjecture of Stanley 5 5 1 P : partially ordered set 2 3 2 3 (poset) 4 2 ω : P → { 1 , 2 , . . . , | P |} 2 2 bijective labelling 3 D EFINITION (R. Stanley) Given a labelled poset ( P, ω ) , a ( P, ω ) -partition is a map f : P → P with the following properties: • f is order-preserving : If x ≤ y in P then f ( x ) ≤ f ( y ) • If x ⋖ y in P and ω ( x ) > ω ( y ) then f ( x ) < f ( y ) x # f − 1 (1) x # f − 1 (2) x f = � � K P,ω ( x ) = · · · . 1 2 f f . – p.7/23

  14. A non-symmetric example x # f − 1 (1) x # f − 1 (2) x T = � � K P,ω ( x ) = · · · . 1 2 f f E XAMPLE 3 d 2 1 c b 1 a Coefficient of x 2 1 x 2 x 3 = 1 Coefficient of x 1 x 2 x 2 3 = 0 ⇒ not symmetric . – p.8/23

  15. Schur labelled skew shape posets and Stanley’s P -partitions Conjecture 1 2 3 7 3 5 8 2 4 5 7 1 4 6 6 8 Bijection: SSYT of shape λ/µ ↔ ( P, ω ) -partitions Furthermore, K P,ω ( x ) = s λ/µ ( x ) . B IG Q UESTION What other labelled posets ( P, ω ) have symmetric K P,ω ( x ) ? . – p.9/23

  16. Schur labelled skew shape posets and Stanley’s P -partitions Conjecture 1 2 3 7 3 5 8 2 4 5 7 1 4 6 6 8 Bijection: SSYT of shape λ/µ ↔ ( P, ω ) -partitions Furthermore, K P,ω ( x ) = s λ/µ ( x ) . B IG Q UESTION What other labelled posets ( P, ω ) have symmetric K P,ω ( x ) ? C ONJECTURE (Stanley, c.1971) K P,ω ( x ) is symmetric if and only if ( P, ω ) is isomorphic to a (Schur labelled) skew shape poset. . – p.9/23

  17. Connection to cylindric skew Schur functions E XAMPLE d c b a We can check that K P,ω ( x ) is symmetric. So does it obey Stanley’s conjecture? a d b c a d b c a d b c . – p.10/23

  18. Connection to cylindric skew Schur functions E XAMPLE d c b a We can check that K P,ω ( x ) is symmetric. So does it obey Stanley’s conjecture? a d b c a d b c a d b c . – p.10/23

  19. Connection to cylindric skew Schur functions E XAMPLE d c b a We can check that K P,ω ( x ) is symmetric. So does it obey Stanley’s conjecture? a d b c a d b c a d b c . – p.10/23

  20. Connection to cylindric skew Schur functions E XAMPLE d c b a We can check that K P,ω ( x ) is symmetric. So does it obey Stanley’s conjecture? a d b c a d b c a d b c . – p.10/23

  21. Connection to cylindric skew Schur functions E XAMPLE d c b a We can check that K P,ω ( x ) is symmetric. So does it obey Stanley’s conjecture? a d b c a d b c a d b c . – p.10/23

  22. Connection to cylindric skew Schur functions E XAMPLE d c b a We can check that K P,ω ( x ) is symmetric. So does it obey Stanley’s conjecture? a d b c a d b c a d b c . – p.10/23

  23. Connection to cylindric skew Schur functions E XAMPLE d c b a We can check that K P,ω ( x ) is symmetric. So does it obey Stanley’s conjecture? a d b c a d b c a d b c . – p.10/23

  24. Connection to cylindric skew Schur functions E XAMPLE d c b a We can check that K P,ω ( x ) is symmetric. So does it obey Stanley’s conjecture? a d b c a d b c a d b c . – p.10/23

  25. Connection to cylindric skew Schur functions E XAMPLE d c b a We can check that K P,ω ( x ) is symmetric. So does it obey Stanley’s conjecture? a d b c a d b c a d b c ω ( a ) > ω ( c ) > ω ( b ) > ω ( d ) > ω ( a ) Yikes! . – p.10/23

  26. Connection to cylindric skew Schur functions E XAMPLE d c b a We can check that K P,ω ( x ) is symmetric. So does it obey Stanley’s conjecture? a d b c a d b c a d b c ω ( a ) > ω ( c ) > ω ( b ) > ω ( d ) > ω ( a ) Yikes! Oriented Poset . – p.10/23

  27. ( P, O ) -partitions Labelled poset ( P, ω ) Oriented poset ( P, O ) K P,ω ( x ) K P,O ( x ) skew shape posets cylindric skew shape posets skew Schur functions cylindric skew Schur functions 7 7 2 3 7 3 3 1 1 3 3 3 2 3 7 1 1 3 2 2 1 2 3 7 1 1 1 1 3 1 . – p.11/23

  28. Malvenuto’s reformulation T HEOREM (C. Malvenuto, c. 1995) A labelled poset is a skew shape poset if and only if every connected component has no forbidden convex subposets T HEOREM (McN.) An oriented poset is a cylindric skew shape poset if and only if every connected component has no forbidden convex subposets C ONJECTURE (Stanley) K P,ω ( x ) is symmetric if and only if every connected component of ( P, ω ) is isomorphic to a skew shape poset. C ONJECTURE (Stanley’s conjecture extended to oriented posets) K P,O ( x ) is symmetric if and only if every connected component of ( P, O ) is isomorphic to a cylindric skew shape poset. . – p.12/23

  29. Extended version is false! . – p.13/23

  30. Motivation 2: Positivity of Gromov- Witten invariants In H ∗ ( Gr kn ) , c ν � σ λ σ µ = λµ σ ν . ν ⊆ k × ( n − k ) In QH ∗ ( Gr kn ) , q d C ν,d � � σ λ ∗ σ µ = λµ σ ν . d ≥ 0 ν ⊢| λ | + | µ |− dn ν ⊆ k × ( n − k ) C ν,d λµ = 3-point Gromov-Witten invariants = # { rational curves of degree d in Gr kn that meet fixed generic translates of the Schubert varieties Ω ν ∨ , Ω λ and Ω µ } . Key point: C ν,d λµ ≥ 0 . “Fundamental Open Problem”: . – p.14/23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend