cylindric schur functions r e t r o s p e c t i v e i n c
play

Cylindric Schur Functions R e t r o s p e c t i v e I - PowerPoint PPT Presentation

Cylindric Schur Functions R e t r o s p e c t i v e I n C o m b i n a t o r i c s : H o n o r i n g t h S T A N L E Y S 6 0 b i R t h - D a y 24 June 2004 Peter McNamara Slides and


  1. Cylindric Schur Functions R e t r o s p e c t i v e I n C o m b i n a t o r i c s : H o n o r i n g t h S T A N L E Y ’ S 6 0 b i R t h - D a y 24 June 2004 Peter McNamara Slides and forthcoming paper available from www.lacim.uqam.ca/~mcnamara Peter McNamara – p.1/11

  2. Cylindric skew Schur functions • Infinite skew shape C • Invariant under translation • Identify ( x, y ) and k n−k ( x + k, y − n + k ) . Peter McNamara – p.2/11

  3. Cylindric skew Schur functions • Infinite skew shape C 6 6 4 4 9 • Invariant under 1 3 3 5 6 6 2 4 4 4 9 translation 1 3 3 5 6 6 2 4 4 4 9 • Identify ( x, y ) and k 1 3 3 5 2 4 n−k ( x + k, y − n + k ) . • Entries weakly increasing in each row Strictly increasing up each column • Alternatively: SSYT with relations between entries in first and last columns x #1 ′ s in T x #2 ′ s in T x T = � � s C = · · · . 1 2 T T Straightforward: s C is a symmetric function Peter McNamara – p.2/11

  4. Cylindric skew Schur functions E XAMPLE k n−k • Gessel,Krattenthaler: “Cylindric Partitions” • Bertram, Ciocan-Fontanine, Fulton: “Quantum Multiplication of Schur Polynomials” • Postnikov: “Affine Approach to Quantum Schubert Calculus” math.CO/0205165 • Stanley: “Recent Developments in Algebraic Combinatorics” math.CO/0211114 Peter McNamara – p.3/11

  5. Motivation In H ∗ ( Gr kn ) , c ν � σ λ σ µ = λµ σ ν . ν ⊆ k × ( n − k ) In QH ∗ ( Gr kn ) , q d C ν,d � � σ λ ∗ σ µ = λµ σ ν . d ≥ 0 ν ⊢| λ | + | µ |− dn ν ⊆ k × ( n − k ) C ν,d λµ = 3-point Gromov-Witten invariants = # { rational curves of degree d in Gr kn that meet fixed generic translates of the Schubert varieties Ω ν ∨ , Ω λ and Ω µ } . Key point: C ν,d λµ ≥ 0 . “Fundamental Open Problem”: Peter McNamara – p.4/11

  6. Motivation In H ∗ ( Gr kn ) , c ν � σ λ σ µ = λµ σ ν . ν ⊆ k × ( n − k ) In QH ∗ ( Gr kn ) , q d C ν,d � � σ λ ∗ σ µ = λµ σ ν . d ≥ 0 ν ⊢| λ | + | µ |− dn ν ⊆ k × ( n − k ) C ν,d λµ = 3-point Gromov-Witten invariants = # { rational curves of degree d in Gr kn that meet fixed generic translates of the Schubert varieties Ω ν ∨ , Ω λ and Ω µ } . Key point: C ν,d λµ ≥ 0 . “Fundamental Open Problem”: Find an algebraic or combinatorial proof of this fact. Peter McNamara – p.4/11

  7. What’s cylindric got to do with it? T HEOREM (Postnikov) C ν,d � s λ/d/µ ( x 1 , . . . , x k ) = λµ s ν ( x 1 , . . . , x k ) . ν ⊆ k × ( n − k ) Conclusion: Want to understand expansions of cylindric skew Schur functions into Schur functions. C OROLLARY s λ/d/µ ( x 1 , x 2 , . . . , x k ) is Schur-positive. Known: s λ/d/µ ( x 1 , x 2 , . . . ) need not be Schur-positive. T HEOREM (McN.) For any cylindric shape C , s C ( x 1 , x 2 , . . . ) is Schur-positive ⇔ C is a skew shape . Peter McNamara – p.5/11

  8. Example: Cylindric ribbons E XAMPLE C: k n−k � s C ( x 1 , x 2 , . . . ) = c ν s ν + s n − k, 1 k − s n − k − 1 , 1 k +1 ν ⊆ k × ( n − k ) + s n − k − 2 , 1 k +2 − · · · + ( − 1) n − k s 1 n . Schur-positive with k + 1 variables Not Schur-positive with ≥ k + 2 variables General cylindric skew shape: ≥ k + 2 + l variables Toric shapes: ≥ 2 k + 1 variables Peter McNamara – p.6/11

  9. Example: Cylindric ribbons C: k n−k � s C ( x 1 , x 2 , . . . ) = c ν s ν + s n − k, 1 k − s n − k − 1 , 1 k +1 ν ⊆ k × ( n − k ) + s n − k − 2 , 1 k +2 − · · · + ( − 1) n − k s 1 n . Peter McNamara – p.7/11

  10. Example: Cylindric ribbons C: H: k k n−k n−k � s C ( x 1 , x 2 , . . . ) = c ν s ν + s n − k, 1 k − s n − k − 1 , 1 k +1 ν ⊆ k × ( n − k ) + s n − k − 2 , 1 k +2 − · · · + ( − 1) n − k s 1 n . However, s C ( x 1 , x 2 , . . . ) = � c ν s ν + s H . ν ⊆ k × ( n − k ) s C : cylindric skew Schur function s H : cylindric Schur function We say that s C is cylindric Schur positive. Peter McNamara – p.7/11

  11. A Conjecture C ONJECTURE For any cylindric shape C , s C is cylindric Schur positive. Peter McNamara – p.8/11

  12. Tool: Cylindric skew Schur functions as alternating sums of skew Schurs Bertram, Ciocan-Fontanine, Fulton: Nice description in terms of ribbons � � Only for toric shapes, certain terms ✁ ✁ Gessel, Krattenthaler: Works for all cylindric shapes ✂ ✂ Not as nice a description ✄ ✄ We can get the best of both worlds: A technique for expanding a cylindric skew Schur function in terms of skew Schur functions that Works for all cylindric shapes like G-K and has a nice description like B-CF-F Peter McNamara – p.9/11

  13. Tool: Cylindric skew Schur functions as alternating sums of skew Schurs E XAMPLE − + = + k n−k Peter McNamara – p.10/11

  14. Tool: Cylindric skew Schur functions as alternating sums of skew Schurs E XAMPLE − + = + k n−k Peter McNamara – p.10/11

  15. Tool: Cylindric skew Schur functions as alternating sums of skew Schurs E XAMPLE − + = + k n−k Peter McNamara – p.10/11

  16. Tool: Cylindric skew Schur functions as alternating sums of skew Schurs E XAMPLE − + = + k n−k Peter McNamara – p.10/11

  17. Tool: Cylindric skew Schur functions as alternating sums of skew Schurs E XAMPLE − + = + k n−k Peter McNamara – p.10/11

  18. Tool: Cylindric skew Schur functions as alternating sums of skew Schurs E XAMPLE − + = + k n−k Peter McNamara – p.10/11

  19. Tool: Cylindric skew Schur functions as alternating sums of skew Schurs E XAMPLE − + = + k n−k = s 33321 / 21 − s 3222111 / 21 + s 321111111 / 21 s C = s 333 + 2 s 3321 + s 33111 + s 3222 − s 321111 + s 3111111 − s 22221 − 2 s 222111 + 2 s 21111111 + s 111111111 . Peter McNamara – p.10/11

  20. St.-Jean-Baptiste Day Peter McNamara – p.11/11

  21. St.-Jean-Baptiste Day Special Session in Algebraic Combinatorics Canadian Mathematical Society Winter Meeting Saturday, December 11 - Monday, December 13 McGill University, Montréal http://www.lacim.uqam.ca/ ∼ biagioli/CMS/cms.html bergeron.francois@uqam.ca François Bergeron biagioli@lacim.uqam.ca Riccardo Biagioli mcnamara@lacim.uqam.ca Peter McNamara christo@lacim.uqam.ca Christophe Reutenauer Peter McNamara – p.11/11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend