laplace expansion of schur functions
play

Laplace Expansion of Schur Functions Helen Riedtmann University of - PowerPoint PPT Presentation

Laplace Expansion of Schur Functions Helen Riedtmann University of Zurich March 29th, 2017 S eminaire Lotharingien de Combinatoire 1 / 22 Outline Background and Notation 1 Sequences and Partitions Schur Functions Laplace Expansion 2


  1. Laplace Expansion of Schur Functions Helen Riedtmann University of Zurich March 29th, 2017 S´ eminaire Lotharingien de Combinatoire 1 / 22

  2. Outline Background and Notation 1 Sequences and Partitions Schur Functions Laplace Expansion 2 Concatenation of Partitions Two Concatenation Identities for Schur Functions Visual Interpretation of Concatenation 3 Application 4 2 / 22

  3. Sequences A sequence is a finite list of elements. length subsequence (not necessarily consecutive) addition (componentwise) union 3 / 22

  4. Sequences A sequence is a finite list of elements. length S = (5 , 3) subsequence (not T = (4 , 4 , 0) necessarily consecutive) addition (componentwise) S ∪ T = (5 , 3 , 4 , 4 , 0) union 3 / 22

  5. Two ∆-Functions Let X = ( x 1 , . . . , x n ) and Y = ( y 1 , . . . , y m ) be sequences. � ∆( X ) = ( x i − x j ) 1 ≤ i < j ≤ n � � ∆( X ; Y ) = ( x i − y j ) 1 ≤ i ≤ n 1 ≤ j ≤ m 4 / 22

  6. Partitions A partition is a non-increasing sequence λ = ( λ 1 , . . . , λ n ) of non-negative integers. The length of a partition is the number of its positive parts. We freely think of partitions as Young diagrams. 5 / 22

  7. Partitions A partition is a non-increasing sequence λ = ( λ 1 , . . . , λ n ) of non-negative integers. The length of a partition is the number of its positive parts. We freely think of partitions as Young diagrams. ρ n = ( n − 1 , . . . , 1 , 0) � m n � = ( m , . . . , m ) � �� � n 5 / 22

  8. Schur Functions Definition Let X be a set of variables of length n and λ a partition. If l ( λ ) > n , then s λ ( X ) = 0; otherwise, � � x λ j + n − j det i 1 ≤ i , j ≤ n s λ ( X ) = . ∆( X ) The Schur function s λ ( X ) is a symmetric homogeneous polynomial of degree | λ | . 6 / 22

  9. Laplace Expansion of Matrices   a 11 a 12 a 13 a 14 a 15 a 21 a 22 a 23 a 24 a 25     a 31 a 32 a 33 a 34 a 35     a 41 a 42 a 43 a 44 a 45   a 51 a 52 a 53 a 54 a 55 7 / 22

  10. Laplace Expansion of Matrices   a 11 a 12 a 13 a 14 a 15 a 21 a 22 a 23 a 24 a 25     a 31 a 32 a 33 a 34 a 35     a 41 a 42 a 43 a 44 a 45   a 51 a 52 a 53 a 54 a 55 7 / 22

  11. Laplace Expansion of Matrices   a 11 a 12 a 13 a 14 a 15 a 21 a 22 a 23 a 24 a 25     a 31 a 32 a 33 a 34 a 35     a 41 a 42 a 43 a 44 a 45   a 51 a 52 a 53 a 54 a 55 7 / 22

  12. Laplace Expansion of Matrices   a 11 a 12 a 13 a 14 a 15 a 21 a 22 a 23 a 24 a 25     a 31 a 32 a 33 a 34 a 35     a 41 a 42 a 43 a 44 a 45   a 51 a 52 a 53 a 54 a 55 7 / 22

  13. Laplace Expansion of Matrices (formal statement) Let A be an n × n matrix. For any subsequence K ⊂ [ n ], � � � 1 det( A ) = ε ( sort ( K , J )) det ( A KJ ) det A [ n ] \ K [ n ] \ J J ⊂ [ n ]: l ( J )= l ( K ) 8 / 22

  14. Laplace Expansion of Matrices (formal statement) Let A be an n × n matrix. For any subsequence K ⊂ [ n ], � � � 1 det( A ) = ε ( sort ( K , J )) det ( A KJ ) det A [ n ] \ K [ n ] \ J J ⊂ [ n ]: l ( J )= l ( K ) � � � 2 det( A ) = ε ( sort ( I , K )) det ( A IK ) det A [ n ] \ I [ n ] \ K I ⊂ [ n ]: l ( I )= l ( K ) 8 / 22

  15. Laplace Expansion of Schur Functions (Dehaye ’12) (1/2)   x λ 1 +5 − 1 x λ 2 +5 − 2 x λ 3 +5 − 3 x λ 4 +5 − 4 x λ 5 +5 − 5 1 1 1 1 1 x λ 1 +5 − 1 x λ 2 +5 − 2 x λ 3 +5 − 3 x λ 4 +5 − 4 x λ 5 +5 − 5    2 2 2 2 2  x λ 1 +5 − 1 x λ 2 +5 − 2 x λ 3 +5 − 3 x λ 4 +5 − 4 x λ 5 +5 − 5     3 3 3 3 3   x λ 1 +5 − 1 x λ 2 +5 − 2 x λ 3 +5 − 3 x λ 4 +5 − 4 x λ 5 +5 − 5   4 4 4 4 4 x λ 1 +5 − 1 x λ 2 +5 − 2 x λ 3 +5 − 3 x λ 4 +5 − 4 x λ 5 +5 − 5 5 5 5 5 5 9 / 22

  16. Laplace Expansion of Schur Functions (Dehaye ’12) (1/2)   x λ 1 +5 − 1 x λ 2 +5 − 2 x λ 3 +5 − 3 x λ 4 +5 − 4 x λ 5 +5 − 5 1 1 1 1 1 x λ 1 +5 − 1 x λ 2 +5 − 2 x λ 3 +5 − 3 x λ 4 +5 − 4 x λ 5 +5 − 5    2 2 2 2 2  x λ 1 +5 − 1 x λ 2 +5 − 2 x λ 3 +5 − 3 x λ 4 +5 − 4 x λ 5 +5 − 5     3 3 3 3 3   x λ 1 +5 − 1 x λ 2 +5 − 2 x λ 3 +5 − 3 x λ 4 +5 − 4 x λ 5 +5 − 5   4 4 4 4 4 x λ 1 +5 − 1 x λ 2 +5 − 2 x λ 3 +5 − 3 x λ 4 +5 − 4 x λ 5 +5 − 5 5 5 5 5 5 9 / 22

  17. Laplace Expansion of Schur Functions (Dehaye ’12) (1/2)   x λ 1 +5 − 1 x λ 2 +5 − 2 x λ 3 +5 − 3 x λ 4 +5 − 4 x λ 5 +5 − 5 1 1 1 1 1 x λ 1 +5 − 1 x λ 2 +5 − 2 x λ 3 +5 − 3 x λ 4 +5 − 4 x λ 5 +5 − 5    2 2 2 2 2  x λ 1 +5 − 1 x λ 2 +5 − 2 x λ 3 +5 − 3 x λ 4 +5 − 4 x λ 5 +5 − 5     3 3 3 3 3   x λ 1 +5 − 1 x λ 2 +5 − 2 x λ 3 +5 − 3 x λ 4 +5 − 4 x λ 5 +5 − 5   4 4 4 4 4 x λ 1 +5 − 1 x λ 2 +5 − 2 x λ 3 +5 − 3 x λ 4 +5 − 4 x λ 5 +5 − 5 5 5 5 5 5 sort λ + ρ 5 = ( µ + ρ 3 ) ∪ ( ν + ρ 2 ) 9 / 22

  18. Laplace Expansion of Schur Functions (Dehaye ’12) (1/2)   x µ 1 +3 − 1 x ν 1 +2 − 1 x µ 2 +3 − 2 x µ 3 +3 − 3 x ν 2 +2 − 2 1 1 1 1 1 x µ 1 +3 − 1 x µ 2 +3 − 2 x µ 3 +3 − 3 x ν 1 +2 − 1 x ν 2 +2 − 2   2 2 2 2 2   x µ 1 +3 − 1 x ν 1 +2 − 1 x µ 2 +3 − 2 x µ 3 +3 − 3 x ν 2 +2 − 2    3 3 3 3 3    x µ 1 +3 − 1 x ν 1 +2 − 1 x µ 2 +3 − 2 x µ 3 +3 − 3 x ν 2 +2 − 2   4 4 4 4 4 x µ 1 +3 − 1 x µ 2 +3 − 2 x µ 3 +3 − 3 x ν 1 +2 − 1 x ν 2 +2 − 2 5 5 5 5 5 sort λ + ρ 5 = ( µ + ρ 3 ) ∪ ( ν + ρ 2 ) 9 / 22

  19. Laplace Expansion of Schur Functions (Dehaye ’12) (1/2)   x µ 1 +3 − 1 x ν 1 +2 − 1 x µ 2 +3 − 2 x µ 3 +3 − 3 x ν 2 +2 − 2 1 1 1 1 1 x µ 1 +3 − 1 x µ 2 +3 − 2 x µ 3 +3 − 3 x ν 1 +2 − 1 x ν 2 +2 − 2   2 2 2 2 2   x µ 1 +3 − 1 x ν 1 +2 − 1 x µ 2 +3 − 2 x µ 3 +3 − 3 x ν 2 +2 − 2    3 3 3 3 3    x µ 1 +3 − 1 x ν 1 +2 − 1 x µ 2 +3 − 2 x µ 3 +3 − 3 x ν 2 +2 − 2   4 4 4 4 4 x µ 1 +3 − 1 x µ 2 +3 − 2 x µ 3 +3 − 3 x ν 1 +2 − 1 x ν 2 +2 − 2 5 5 5 5 5 ε ( sort ) s µ ( S ) s ν ( T )∆( S )∆( T ) � s λ ( X ) = ∆( X ) S , T ⊂X : S∪ 3 , 2 T sort = X 9 / 22

  20. Laplace Expansion of Schur Functions (Dehaye ’12) (2/2) sort λ + ρ 5 = ( µ + ρ 3 ) ∪ ( ν + ρ 2 ) ε ( sort ) s µ ( S ) s ν ( T )∆( S )∆( T ) � s λ ( X ) = ∆( X ) S , T ⊂X : S∪ 3 , 2 T sort = X ε ( sort ) s µ ( S ) s ν ( T ) � = ∆( S ; T ) S , T ⊂X : S∪ 3 , 2 T sort = X 10 / 22

  21. Concatenation of Partitions Definition Let µ and ν be two partitions of length at most m and n , respectively. The ( m , n )-concatenation of µ and ν , denoted µ ⋆ m , n ν , is the partition that satisfies sort µ ⋆ m , n ν + ρ m + n = ( µ + ρ m ) ∪ ( ν + ρ n ) if it exists; otherwise, we set µ ⋆ m , n ν = ∞ . Here, ∞ is just a symbol with the property that s ∞ ( X ) = 0 for any set of variables X . The sign of the concatenation is given by ε ( µ, ν ) = ε ( sort ) . 11 / 22

  22. Concatenation of Partitions Definition Let µ and ν be two partitions of length at most m and n , respectively. The ( m , n )-concatenation of µ and ν , denoted µ ⋆ m , n ν , is the partition that satisfies sort µ ⋆ m , n ν + ρ m + n = ( µ + ρ m ) ∪ ( ν + ρ n ) if it exists; otherwise, we set µ ⋆ m , n ν = ∞ . Here, ∞ is just a symbol with the property that s ∞ ( X ) = 0 for any set of variables X . The sign of the concatenation is given by ε ( µ, ν ) = ε ( sort ) . (5 , 1) ⋆ 2 , 4 (3 , 3) = ∞ 11 / 22

  23. Concatenation of Partitions Definition Let µ and ν be two partitions of length at most m and n , respectively. The ( m , n )-concatenation of µ and ν , denoted µ ⋆ m , n ν , is the partition that satisfies sort µ ⋆ m , n ν + ρ m + n = ( µ + ρ m ) ∪ ( ν + ρ n ) if it exists; otherwise, we set µ ⋆ m , n ν = ∞ . Here, ∞ is just a symbol with the property that s ∞ ( X ) = 0 for any set of variables X . The sign of the concatenation is given by ε ( µ, ν ) = ε ( sort ) . (5 , 1) ⋆ 3 , 2 (3 , 3) = (7 , 4 , 3 , 2 , 0) − ρ 5 = (3 , 1 , 1 , 1 , 0) 11 / 22

  24. First Concatenation Identity for Schur Functions Lemma (Dehaye ’12) Let the set X consist of m + n variables. For any pair of partitions µ and ν with at most m and n parts, respectively, it holds that ε ( µ, ν ) s µ ( S ) s ν ( T ) � s µ⋆ m , n ν ( X ) = . ∆( S ; T ) S , T ⊂X : S∪ m , n T sort = X 12 / 22

  25. Laplace Expansion of Schur Functions (Transposed)   x λ 1 +5 − 1 x λ 2 +5 − 2 x λ 3 +5 − 3 x λ 4 +5 − 4 x λ 5 +5 − 5 1 1 1 1 1 x λ 1 +5 − 1 x λ 2 +5 − 2 x λ 3 +5 − 3 x λ 4 +5 − 4 x λ 5 +5 − 5    2 2 2 2 2  x λ 1 +5 − 1 x λ 2 +5 − 2 x λ 3 +5 − 3 x λ 4 +5 − 4 x λ 5 +5 − 5    3 3 3 3 3    x λ 1 +5 − 1 x λ 2 +5 − 2 x λ 3 +5 − 3 x λ 4 +5 − 4 x λ 5 +5 − 5   4 4 4 4 4 x λ 1 +5 − 1 x λ 2 +5 − 2 x λ 3 +5 − 3 x λ 4 +5 − 4 x λ 5 +5 − 5 5 5 5 5 5 13 / 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend