covariant brackets in field theories and particle dynamics
play

Covariant Brackets in Field Theories and Particle Dynamics A. - PowerPoint PPT Presentation

Covariant Brackets in Field Theories and Particle Dynamics A. Ibort ICMAT & Department of Mathematics Univ. Carlos III de Madrid Celebrating D. Holms 70th Birthday ICMAT, Madrid, july 3-7, 2017 Index 1. Introduction. 2. The


  1. Covariant Brackets in Field Theories and Particle Dynamics A. Ibort ICMAT & Department of Mathematics Univ. Carlos III de Madrid Celebrating D. Holm’s 70th Birthday ICMAT, Madrid, july 3-7, 2017

  2. Index 1. Introduction. 2. The setting: multisymplectic formalism 3. The bracket: canonical forms 4. Jacobi brackets in particle dinamics. M. Asorey, F. Ciaglia, F. Di Cosmo, A. Ibort. Covariant brackets for particles and fields. M. Phys. Lett. A 32 (19) 1750100, 16 pages (2017); ibid. , Covariant Jacobi bracket for test particles. To appear M. Phys. Lett. A 32 (2017).

  3. 1. Introduction R. E. Peierls; The Commutation Laws of Relativistic Field Theories , Proc. Roy. Soc. A, 214 , 1117 (1952). B. S. DeWitt; Dynamical Theory of Groups and Fields , Documents on Modern Physics (Gordon and Breach 1965). J. E. Marsden, R. Montgomery, P.J. Morrison, W.B. Thompson; Covariant Poisson brackets for classical Fields, Ann. of Phys., 167 , 29-47 (1986). C. Crnkovic, E. Witten; Covariant description of canonical formalism in geometrical theories . Three hundred years of gravitation , 676-684 (1987). M. Forger and S. V. Romero; Covariant Poisson Brackets in Geometric Field Theory Commun. Math. Phys., 256 , 375 (2005). I. Khavkine; Covariant Phase Space, constraints and the Peierls formula, Int. J. Mod. Phys. A 29 , 1430009 (2014).

  4. 2. The Setting Covariant Hamiltonian First-Order Field Theories The multisymplectic setting: π : E → M ( x µ , u a ) , a = 1 , . . . , r µ = 0 , 1 , . . . , d m = 1 + d vol M = d m x π 0 1 : J 1 E → E ( x µ , u a ; u a µ ) P ( E ) = A ff ( J 1 E ) / R Covariant phase space: u a µ 7! ρ µ a u a µ + ρ Vector bundle over E modelled on π ∗ ( TM ) ⊗ E V E ∗ τ 0 1 : P ( E ) → E ( x µ , u a ; ρ µ a ) A. Ibort and A. Spivak, Covariant Hamiltonian field theories on manifolds with boundary: Yang–Mills theories, J. Geom. Mech. 9(1) (2017) 47–82.

  5. 2. The Setting (II) Covariant phase space: P ( E ) = A ff ( J 1 E ) / R = J 1 E ∗ τ 0 ( x µ , u a ; ρ µ a ) 1 : P ( E ) → E π ∗ ( TM ) ⊗ E V E ∗ Multisymplectic model M ( E ) = V m 1 E Ω = d Θ ( x µ , u a ; ρ , ρ ν a ) a du a ∧ vol µ + ρ vol M Θ = ρ µ vol µ = i ∂ / ∂ x µ vol M 0 → V m → V m 1 E → P ( E ) → 0 0 E , ρ = − H ( x µ , u a , ρ µ a ) a du a ∧ vol µ − H ( x µ , u a , ρ µ Θ H = ρ µ a ) vol M

  6. 2. The Setting (III) The action Φ ∈ F M Φ : M ! E , π � Φ = id M τ 0 P : E ! P ( E ) , 1 � P = id E “Double sections” F P ( E ) π � τ 0 χ : M ! P ( E ) , 1 � P = id M P � Φ = χ χ = ( Φ , P ) ∈ F P ( E ) Z Z ( P µ a ( x ) ∂ µ Φ a ( x ) − H ( x, Φ ( x ) , P ( x ))) vol M = S ( χ ) = χ ∗ Θ H M M M ( E ) Θ H µ h Sections, fields, Θ H = h ∗ θ H ∗ Θ i ∗ ( J 1 E ∗ ) J 1 E ∗ forms and all that… τ 0 π 0 ( p, β ) τ 1 1 π 1 P 1 E ∂ M = i ∗ E χ E Φ π ϕ π ∂ M i ∂ M M

  7. 2. The Setting (IV) Boundaries x k ∂ M 6 = ; k = 1 , 2 , 3 Π : F P ( E ) → T ∗ F ∂ M Π ( Φ , P ) = ( ϕ , p ) p a = P 0 ( ϕ , p ) ∈ T ∗ F ∂ M ϕ = Φ � i, a � i ϕ t ( x k ) = Φ ( t, x k ) Canonical 1-form x 0 = t M ∂ M p a ( x ) δϕ a ( x )vol ∂ M R α ( ϕ ,p ) ( δϕ , δ p ) = x k ∂ M α ∂ M = p a δϕ a t = − ✏ t = 0 Canonical symplectic form U ✏ ∼ = ( − ✏ , 0] × @ M ω ∂ M = − d α ∂ M vol M = dt ∧ vol ∂ M

  8. 2. The Setting (V) The fundamental formula d S χ = EL χ + Π ∗ α χ χ ∈ F P ( E ) Z Z χ ∗ � � ( χ � i ) ∗ � � d S ( χ )( U ) = + i e U d Θ H i e U Θ H ∂ M M U = ( δ Φ , δ P ) ∈ T χ F P ( E ) Z ( χ � i ) ∗ ( i ˜ U Θ H ) = ( Π ∗ α ) χ ( U ) The boundary term ∂ M U = δ Φ a ∂ ∂ a du a ∧ vol µ − H ( x µ , u a , ρ µ Θ H = ρ µ ˜ a ) vol M ∂ u a + δ P µ ∂ρ µ a a

  9. 2. The Setting (VI) The Euler-Lagrange 1-form Z χ ∗ ( i ˜ EL χ ( U ) = U d Θ H ) M ✓ ∂ Φ a ✓ ∂ P µ ◆ ◆ � Z ∂ x µ − ∂ H ∂ x µ + ∂ H a δ P µ δ Φ a = a + vol M ∂ P µ ∂ Φ a a M The space of solutions of Euler-Lagrange equations EL M = { χ = ( Φ , P ) | EL χ = 0 } = { ( Φ , P ) | ∂ Φ a ∂ x µ = ∂ H a , ∂ P µ ∂ x µ = − ∂ H ∂ Φ a } a ∂ P µ

  10. 3. The Bracket Canonical forms on the space of fields F P ( E ) Z S ( χ ) = χ ∗ Θ H 0-form: action M 1-form: Euler-Lagrange form Z χ ∗ ( i ˜ EL χ ( U ) = U d Θ H ) M Beyond: U = ( δ U Φ , δ U P ) ∈ T χ F P ( E ) Z Ω Σ χ ( U, V ) = i ∗ ( χ ∗ ( i U i V d Θ H )) Σ Σ M Z ( δ U ϕ a δ V p a − δ U p a δ V ϕ a ) vol Σ = Σ M + = Π ∗ Σ ω Σ = − d ( Π ∗ Σ α Σ ) M − Σ , → M

  11. 3. The Bracket (II) Σ 1 Σ 2 Z S 12 ( χ ) = χ ∗ Θ H M 12 M M 12 dS 12 = EL + Π ∗ Σ 2 α Σ 2 − Π ∗ Σ 1 α Σ 1 ∂ M 12 = Σ 2 t Σ 1 � = d (EL) � Π ∗ Σ 1 ω Σ 1 − Π ∗ Π ∗ Σ 2 α Σ 2 − Π ∗ Σ 2 ω Σ 2 = − d Σ 1 α Σ 1 Ω Σ 1 − Ω Σ 1 = d(EL) The pull-back of the 2-forms Ω Σ 1 Ω Σ 2 along the map ◆ : EL , → F P ( E ) is such that ι ∗ ( Ω Σ 1 ) − ι ∗ ( Ω Σ 1 ) = d ( ι ∗ EL) = 0 Canonical closed 2-form on the space of solutions EL Ω = ι ∗ ( Ω Σ )

  12. 3. The Bracket (III) In general the canonical 2-form on the space of solutions is just presymplectic ker Ω 6 = 0 Ω If the canonical 2-form is symplectic, then we may define a covariant Poisson bracket on the space of solutions { F, G } = Ω ( X F , X G ) i X F Ω = dF DeWitt’s formula δχ ( x ) G ( x, y ) δ F 2 δ F 1 Z { F 1 , F 2 } ( χ ) = δχ ( y ) dxdy M × M G is the causal Green’s function of the linearisation of the equations of motion along the solution χ

  13. 4. Jacobi brackets ( M, η ) ( − + · · · +) (Globally hyperbolic) Space-time x µ µ = 0 , 1 , . . . , d E = M × R → R C m Space of parametrized time-like geodesics such that p µ p µ + m 2 = 0 L = m x µ ˙ h ˙ γ i = � 1 x ν γ , ˙ 2 η µ ν ˙ C m is a contact manifold of dimension 2m-1 J 00 + R (˙ γ , J )˙ γ = 0 Jacobi field γ ∈ C m J ∈ T γ C m Contact 1-form Θ γ ( J ) = h ˙ γ , J i ω = d Θ Reeb field − ˙ ω γ ( J 1 , J 2 ) = h J 1 , J 0 2 i � h J 2 , J 0 1 i γ

  14. 4. Jacobi brackets (II) Theorem: The 2-form defined by the contact structure is ω Ω the canonical covariant 2-form of the 1+0 field theory on with Lagrangian L E = M × R → R γ i ⊥ ker Θ = h ˙ γ Ω = 0 i ˙ Thus the canonical covariant 2-form of the theory defines a Jacobi bracket (not Poisson) Jacobi manifold ( Λ , X ) , [ Λ , Λ ] = 2 X ∧ Λ , L X Λ = 0 [ f, g ] = Λ ( d f, dg ) + fX ( g ) − gX ( f ) Jacobi structure of contact manifolds i X θ ∧ ( d θ ) n = ( d θ ) n i Λ θ ∧ d θ n = n θ ∧ d θ n − 1 . [ f, g ] θ ∧ d θ n = ( n − 1) d f ∧ dg ∧ θ ∧ ( d θ ) n − 1 + ( fdg − gd f ) ∧ d θ n

  15. 4. Jacobi brackets (III) ✓ δ F 1 Z δγ µ ( s ) G µ ν ( s − s 0 ) δ F 2 dsds 0 δγ ν ( s 0 ) [ F 1 , F 2 ] ( γ ) = ◆ γ µ ( s 0 ) δ F 2 γ µ ( s 0 ) δ F 1 δγ µ ( s 0 ) − F 2 ( s )˙ δγ µ ( s 0 ) + F 1 ( s )˙ G(s-s’) is the causal Green function of Jacobi’s equation Minkowski space-time M m P µ ν = η µ ν − k µ k ν G µ ν ( s, s 0 ) = P µ ν ( s − s 0 ) , m x ν k µ = η µ ν ˙ Z F = x µ δ ( s − s 1 ) ds F ( γ ) = γ µ ( s 1 ) F = x µ ( s 1 ) R [ x µ ( s 1 ) , x ν ( s 2 )] ( γ ) = P µ ν ( s 1 − s 2 ) + x µ ( s 1 ) k ν ( s 2 ) − x ν ( s 2 ) k µ ( s 1 ) [ x µ , x ν ] = x µ k ν − x ν k µ Equal-time bracket

  16. Congratulations!

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend