on the method of brackets
play

On the method of brackets Armin Straub Tulane University, New - PowerPoint PPT Presentation

The method of brackets Examples A Feynman diagram Troubles RMT Distributional On the method of brackets Armin Straub Tulane University, New Orleans January 9, 2011 Joint work with : Ivan Gonzalez Victor Moll Universidad Santa Maria,


  1. The method of brackets Examples A Feynman diagram Troubles RMT Distributional Evaluating bracket series Rule φ n f ( n ) � an + b � = 1 � | a | f ( n ∗ )Γ( − n ∗ ) , n where n ∗ is the solution of the equation an + b = 0 . Example � ∞ � x s − 1 e − x d x = φ n � n + s � = Γ( − n ∗ ) = Γ( s ) . 0 n Example � ∞ � ∞ e − ax 2 d x = � � φ n a n x 2 n d x = φ n a n � 2 n + 1 � � �� � 0 0 n n n ∗ = − 1 / 2 � π = 1 2 a n ∗ Γ( − n ∗ ) = 1 2 a Armin Straub On the method of brackets

  2. The method of brackets Examples A Feynman diagram Troubles RMT Distributional More interesting example ∞ ( − 1) k ( x/ 2) 2 k + ν � ◮ Bessel function: J ν ( x ) = k ! Γ( k + ν + 1) k =0 Armin Straub On the method of brackets

  3. The method of brackets Examples A Feynman diagram Troubles RMT Distributional More interesting example ∞ ( − 1) k ( x/ 2) 2 k + ν � ◮ Bessel function: J ν ( x ) = k ! Γ( k + ν + 1) k =0 � ∞ e − αx J 0 ( βx ) d x ◮ 0 Armin Straub On the method of brackets

  4. The method of brackets Examples A Feynman diagram Troubles RMT Distributional More interesting example ∞ ( − 1) k ( x/ 2) 2 k + ν � ◮ Bessel function: J ν ( x ) = k ! Γ( k + ν + 1) k =0 � ∞ � 2 k 1 � β � e − αx J 0 ( βx ) d x = φ m,k α m k ! � m + 2 k + 1 � ◮ 2 0 m,k Armin Straub On the method of brackets

  5. The method of brackets Examples A Feynman diagram Troubles RMT Distributional More interesting example ∞ ( − 1) k ( x/ 2) 2 k + ν � ◮ Bessel function: J ν ( x ) = k ! Γ( k + ν + 1) k =0 � ∞ � 2 k 1 � β � e − αx J 0 ( βx ) d x = φ m,k α m k ! � m + 2 k + 1 � ◮ 2 0 m,k ◮ Choosing k as a free variable: m ∗ = − 2 k − 1 Armin Straub On the method of brackets

  6. The method of brackets Examples A Feynman diagram Troubles RMT Distributional More interesting example ∞ ( − 1) k ( x/ 2) 2 k + ν � ◮ Bessel function: J ν ( x ) = k ! Γ( k + ν + 1) k =0 � ∞ � 2 k 1 � β � e − αx J 0 ( βx ) d x = φ m,k α m k ! � m + 2 k + 1 � ◮ 2 0 m,k ◮ Choosing k as a free variable: m ∗ = − 2 k − 1 � 2 k Γ( − m ∗ ) � 2 k Γ(2 k + 1) φ k α m ∗ � β � β � � φ k α − 2 k − 1 = 2 k ! 2 k ! k k Armin Straub On the method of brackets

  7. The method of brackets Examples A Feynman diagram Troubles RMT Distributional More interesting example ∞ ( − 1) k ( x/ 2) 2 k + ν � ◮ Bessel function: J ν ( x ) = k ! Γ( k + ν + 1) k =0 � ∞ � 2 k 1 � β � e − αx J 0 ( βx ) d x = φ m,k α m k ! � m + 2 k + 1 � ◮ 2 0 m,k ◮ Choosing k as a free variable: m ∗ = − 2 k − 1 � 2 k Γ( − m ∗ ) � 2 k Γ(2 k + 1) φ k α m ∗ � β � β � � φ k α − 2 k − 1 = 2 k ! 2 k ! k k � � β � 2 k � 2 k = 1 � ( − 1) k α k 2 α k Armin Straub On the method of brackets

  8. The method of brackets Examples A Feynman diagram Troubles RMT Distributional More interesting example ∞ ( − 1) k ( x/ 2) 2 k + ν � ◮ Bessel function: J ν ( x ) = k ! Γ( k + ν + 1) k =0 � ∞ � 2 k 1 � β � e − αx J 0 ( βx ) d x = φ m,k α m k ! � m + 2 k + 1 � ◮ 2 0 m,k ◮ Choosing k as a free variable: m ∗ = − 2 k − 1 � 2 k Γ( − m ∗ ) � 2 k Γ(2 k + 1) φ k α m ∗ � β � β � � φ k α − 2 k − 1 = 2 k ! 2 k ! k k � � β � 2 k � 2 k = 1 1 � ( − 1) k = � α 2 + β 2 α k 2 α k with the series converging for β < α . Armin Straub On the method of brackets

  9. The method of brackets Examples A Feynman diagram Troubles RMT Distributional More interesting example ∞ ( − 1) k ( x/ 2) 2 k + ν � ◮ Bessel function: J ν ( x ) = k ! Γ( k + ν + 1) k =0 � ∞ � 2 k 1 � β � e − αx J 0 ( βx ) d x = φ m,k α m k ! � m + 2 k + 1 � ◮ 2 0 m,k ◮ Choosing k as a free variable: m ∗ = − 2 k − 1 � 2 k Γ( − m ∗ ) � 2 k Γ(2 k + 1) φ k α m ∗ � β � β � � φ k α − 2 k − 1 = 2 k ! 2 k ! k k � � β � 2 k � 2 k = 1 1 � ( − 1) k = � α 2 + β 2 α k 2 α k with the series converging for β < α . ◮ Similarly, for m free: � − m − 1 Γ(1 / 2 + m/ 2) � β 1 1 � φ m α m Γ(1 / 2 − m/ 2) = . . . = � α 2 + β 2 2 2 m Armin Straub On the method of brackets

  10. The method of brackets Examples A Feynman diagram Troubles RMT Distributional Evaluating higher bracket series Rule φ n f ( n ) � an + b � = 1 � where an ∗ + b = 0 . | a | f ( n ∗ )Γ( − n ∗ ) , n Armin Straub On the method of brackets

  11. The method of brackets Examples A Feynman diagram Troubles RMT Distributional Evaluating higher bracket series Rule φ n f ( n ) � an + b � = 1 � where an ∗ + b = 0 . | a | f ( n ∗ )Γ( − n ∗ ) , n Rule (Evaluation) � φ { n } f ( n 1 , . . . , n r ) � a 11 n 1 + · · · a 1 r n r + b 1 � · · · � a r 1 n 1 + · · · a rr n r + b r � { n } 1 | det( A ) | f ( n ∗ 1 , . . . , n ∗ r )Γ( − n ∗ 1 ) · · · Γ( − n ∗ = r ) , where A = ( a ij ) and ( n ∗ i ) such that the brackets vanish. Armin Straub On the method of brackets

  12. The method of brackets Examples A Feynman diagram Troubles RMT Distributional Evaluating higher bracket series Rule φ n f ( n ) � an + b � = 1 � where an ∗ + b = 0 . | a | f ( n ∗ )Γ( − n ∗ ) , n Rule (Evaluation) � φ { n } f ( n 1 , . . . , n r ) � a 11 n 1 + · · · a 1 r n r + b 1 � · · · � a r 1 n 1 + · · · a rr n r + b r � { n } 1 | det( A ) | f ( n ∗ 1 , . . . , n ∗ r )Γ( − n ∗ 1 ) · · · Γ( − n ∗ = r ) , where A = ( a ij ) and ( n ∗ i ) such that the brackets vanish. Rule (Combining) If there are more summation indices than brackets, free variables are chosen. Each choice produces a series. Those converging in a common region are added. Armin Straub On the method of brackets

  13. The method of brackets Examples A Feynman diagram Troubles RMT Distributional Multinomial expansions Rule (Multinomial) 1 � s + m 1 + · · · + m r � � φ { m } a m 1 · · · a m r ( a 1 + a 2 + · · · + a r ) s = 1 r Γ( s ) m 1 ,...,m r where φ { m } := φ m 1 · · · φ m r . Armin Straub On the method of brackets

  14. The method of brackets Examples A Feynman diagram Troubles RMT Distributional Multinomial expansions Rule (Multinomial) 1 � s + m 1 + · · · + m r � � φ { m } a m 1 · · · a m r ( a 1 + a 2 + · · · + a r ) s = 1 r Γ( s ) m 1 ,...,m r where φ { m } := φ m 1 · · · φ m r . ◮ Follows from the integral representation of Γ( s ) : � ∞ Γ( s ) x s − 1 e − ( a 1 + ... + a r ) x d x ( a 1 + . . . + a r ) s = 0 Armin Straub On the method of brackets

  15. The method of brackets Examples A Feynman diagram Troubles RMT Distributional Multinomial expansions Rule (Multinomial) 1 � s + m 1 + · · · + m r � � φ { m } a m 1 · · · a m r ( a 1 + a 2 + · · · + a r ) s = 1 r Γ( s ) m 1 ,...,m r where φ { m } := φ m 1 · · · φ m r . ◮ Follows from the integral representation of Γ( s ) : � ∞ Γ( s ) x s − 1 e − ( a 1 + ... + a r ) x d x ( a 1 + . . . + a r ) s = 0 � ∞ r � � φ m i ( a i x ) m i d x x s − 1 = 0 m i i =1 Armin Straub On the method of brackets

  16. The method of brackets Examples A Feynman diagram Troubles RMT Distributional Multinomial expansions Rule (Multinomial) 1 � s + m 1 + · · · + m r � � φ { m } a m 1 · · · a m r ( a 1 + a 2 + · · · + a r ) s = 1 r Γ( s ) m 1 ,...,m r where φ { m } := φ m 1 · · · φ m r . ◮ Follows from the integral representation of Γ( s ) : � ∞ Γ( s ) x s − 1 e − ( a 1 + ... + a r ) x d x ( a 1 + . . . + a r ) s = 0 � ∞ r � � φ m i ( a i x ) m i d x x s − 1 = 0 m i i =1 � φ { m } a m 1 · · · a m r = � s + m 1 + · · · + m r � . 1 r { m } Armin Straub On the method of brackets

  17. The method of brackets Examples A Feynman diagram Troubles RMT Distributional A two-dimensional example � ∞ � ∞ x s − 1 y t − 1 exp ( − ( x + y ) α ) d x d y 0 0 Armin Straub On the method of brackets

  18. The method of brackets Examples A Feynman diagram Troubles RMT Distributional A two-dimensional example � ∞ � ∞ x s − 1 y t − 1 exp ( − ( x + y ) α ) d x d y 0 0 � ∞ � ∞ � x s − 1 y t − 1 ( x + y ) αj d x d y = φ j 0 0 j Armin Straub On the method of brackets

  19. The method of brackets Examples A Feynman diagram Troubles RMT Distributional A two-dimensional example � ∞ � ∞ x s − 1 y t − 1 exp ( − ( x + y ) α ) d x d y 0 0 � ∞ � ∞ � x s − 1 y t − 1 ( x + y ) αj d x d y = φ j 0 0 j � ∞ � ∞ φ n,m x n y m � n + m − αj � � x s − 1 y t − 1 � = φ j d x d y Γ( − αj ) 0 0 j n,m Armin Straub On the method of brackets

  20. The method of brackets Examples A Feynman diagram Troubles RMT Distributional A two-dimensional example � ∞ � ∞ x s − 1 y t − 1 exp ( − ( x + y ) α ) d x d y 0 0 � ∞ � ∞ � x s − 1 y t − 1 ( x + y ) αj d x d y = φ j 0 0 j � ∞ � ∞ φ n,m x n y m � n + m − αj � � x s − 1 y t − 1 � = φ j d x d y Γ( − αj ) 0 0 j n,m 1 � = φ j,n,m Γ( − αj ) � n + m − αj � � n + s � � m + t � j,n,m Armin Straub On the method of brackets

  21. The method of brackets Examples A Feynman diagram Troubles RMT Distributional A two-dimensional example � ∞ � ∞ x s − 1 y t − 1 exp ( − ( x + y ) α ) d x d y 0 0 � ∞ � ∞ � x s − 1 y t − 1 ( x + y ) αj d x d y = φ j 0 0 j � ∞ � ∞ φ n,m x n y m � n + m − αj � � x s − 1 y t − 1 � = φ j d x d y Γ( − αj ) 0 0 j n,m 1 � = φ j,n,m Γ( − αj ) � n + m − αj � � n + s � � m + t � j,n,m n ∗ = − s , m ∗ = − t , j ∗ = − s + t α , | det | = α Armin Straub On the method of brackets

  22. The method of brackets Examples A Feynman diagram Troubles RMT Distributional A two-dimensional example � ∞ � ∞ x s − 1 y t − 1 exp ( − ( x + y ) α ) d x d y 0 0 � ∞ � ∞ � x s − 1 y t − 1 ( x + y ) αj d x d y = φ j 0 0 j � ∞ � ∞ φ n,m x n y m � n + m − αj � � x s − 1 y t − 1 � = φ j d x d y Γ( − αj ) 0 0 j n,m 1 � = φ j,n,m Γ( − αj ) � n + m − αj � � n + s � � m + t � j,n,m n ∗ = − s , m ∗ = − t , j ∗ = − s + t α , | det | = α = 1 1 Γ( − αj ∗ )Γ( − n ∗ )Γ( − m ∗ )Γ( − j ∗ ) α Armin Straub On the method of brackets

  23. The method of brackets Examples A Feynman diagram Troubles RMT Distributional A two-dimensional example � ∞ � ∞ x s − 1 y t − 1 exp ( − ( x + y ) α ) d x d y 0 0 � ∞ � ∞ � x s − 1 y t − 1 ( x + y ) αj d x d y = φ j 0 0 j � ∞ � ∞ φ n,m x n y m � n + m − αj � � x s − 1 y t − 1 � = φ j d x d y Γ( − αj ) 0 0 j n,m 1 � = φ j,n,m Γ( − αj ) � n + m − αj � � n + s � � m + t � j,n,m n ∗ = − s , m ∗ = − t , j ∗ = − s + t α , | det | = α � s + t � = 1 Γ( − αj ∗ )Γ( − n ∗ )Γ( − m ∗ )Γ( − j ∗ ) = 1 1 Γ( s )Γ( t ) Γ( s + t ) Γ α α α Armin Straub On the method of brackets

  24. The method of brackets Examples A Feynman diagram Troubles RMT Distributional A two-dimensional example � ∞ � ∞ x s − 1 y t − 1 exp ( − ( x + y ) α ) d x d y 0 0 � ∞ � ∞ � x s − 1 y t − 1 ( x + y ) αj d x d y = φ j 0 0 j � ∞ � ∞ φ n,m x n y m � n + m − αj � � x s − 1 y t − 1 � = φ j d x d y Γ( − αj ) 0 0 j n,m 1 � = φ j,n,m Γ( − αj ) � n + m − αj � � n + s � � m + t � j,n,m n ∗ = − s , m ∗ = − t , j ∗ = − s + t α , | det | = α � s + t � = 1 Γ( − αj ∗ )Γ( − n ∗ )Γ( − m ∗ )Γ( − j ∗ ) = 1 1 Γ( s )Γ( t ) Γ( s + t ) Γ α α α ◮ Mathematica 7 cannot evaluate this integral. Armin Straub On the method of brackets

  25. The method of brackets Examples A Feynman diagram Troubles RMT Distributional More dimensions ◮ This generalizes to arbitrary dimensions: Theorem � ∞ � ∞ n � exp ( − ( x 1 + . . . + x n ) α ) x s i − 1 · · · d x i i 0 0 i =1 � n � s 1 + . . . + s n � = 1 i =1 Γ( s i ) Γ( s 1 + . . . + s n )Γ α α Armin Straub On the method of brackets

  26. The method of brackets Examples A Feynman diagram Troubles RMT Distributional A Bessel integral � ∞ x s − 1 J 0 ( αx ) (1 + x 2 ) λ d x 0 Armin Straub On the method of brackets

  27. The method of brackets Examples A Feynman diagram Troubles RMT Distributional A Bessel integral � ∞ x s − 1 J 0 ( αx ) (1 + x 2 ) λ d x 0 � ∞ x 2 k + s − 1 � α � 2 k 1 � = φ k (1 + x 2 ) λ d x 2 Γ( k + 1) 0 k Armin Straub On the method of brackets

  28. The method of brackets Examples A Feynman diagram Troubles RMT Distributional A Bessel integral � ∞ x s − 1 J 0 ( αx ) (1 + x 2 ) λ d x 0 � ∞ x 2 k + s − 1 � α � 2 k 1 � = φ k (1 + x 2 ) λ d x 2 Γ( k + 1) 0 k 1 � α � 2 k 1 � = φ k,n,m Γ( k + 1) � n + m + λ � � 2 m + 2 k + s � Γ( λ ) 2 k,n,m Armin Straub On the method of brackets

  29. The method of brackets Examples A Feynman diagram Troubles RMT Distributional A Bessel integral � ∞ x s − 1 J 0 ( αx ) (1 + x 2 ) λ d x 0 � ∞ x 2 k + s − 1 � α � 2 k 1 � = φ k (1 + x 2 ) λ d x 2 Γ( k + 1) 0 k 1 � α � 2 k 1 � = φ k,n,m Γ( k + 1) � n + m + λ � � 2 m + 2 k + s � Γ( λ ) 2 k,n,m ◮ 3 indices, 2 brackets: 1 free variable Armin Straub On the method of brackets

  30. The method of brackets Examples A Feynman diagram Troubles RMT Distributional A Bessel integral — k free � ∞ x s − 1 J 0 ( αx ) (1 + x 2 ) λ d x 0 1 � α � 2 k 1 � = φ k,n,m Γ( k + 1) � n + m + λ � � 2 m + 2 k + s � Γ( λ ) 2 k,n,m ◮ k free: m ∗ = − k − s 2 and n ∗ = − λ + k + s 2 . | det | = 2 Armin Straub On the method of brackets

  31. The method of brackets Examples A Feynman diagram Troubles RMT Distributional A Bessel integral — k free � ∞ x s − 1 J 0 ( αx ) (1 + x 2 ) λ d x 0 1 � α � 2 k 1 � = φ k,n,m Γ( k + 1) � n + m + λ � � 2 m + 2 k + s � Γ( λ ) 2 k,n,m ◮ k free: m ∗ = − k − s 2 and n ∗ = − λ + k + s 2 . | det | = 2 1 � α � 2 k 1 � Γ( k + 1)Γ( − n ∗ )Γ( − m ∗ ) φ k 2Γ( λ ) 2 k Armin Straub On the method of brackets

  32. The method of brackets Examples A Feynman diagram Troubles RMT Distributional A Bessel integral — k free � ∞ x s − 1 J 0 ( αx ) (1 + x 2 ) λ d x 0 1 � α � 2 k 1 � = φ k,n,m Γ( k + 1) � n + m + λ � � 2 m + 2 k + s � Γ( λ ) 2 k,n,m ◮ k free: m ∗ = − k − s 2 and n ∗ = − λ + k + s 2 . | det | = 2 1 � α � 2 k 1 � Γ( k + 1)Γ( − n ∗ )Γ( − m ∗ ) φ k 2Γ( λ ) 2 k ( − 1) k 1 � α � 2 k � Γ( λ − k − s 2 )Γ( k + s = 2 ) ( k !) 2 2Γ( λ ) 2 k Armin Straub On the method of brackets

  33. The method of brackets Examples A Feynman diagram Troubles RMT Distributional A Bessel integral — k free � ∞ x s − 1 J 0 ( αx ) (1 + x 2 ) λ d x 0 1 � α � 2 k 1 � = φ k,n,m Γ( k + 1) � n + m + λ � � 2 m + 2 k + s � Γ( λ ) 2 k,n,m ◮ k free: m ∗ = − k − s 2 and n ∗ = − λ + k + s 2 . | det | = 2 1 � α � 2 k 1 � Γ( k + 1)Γ( − n ∗ )Γ( − m ∗ ) φ k 2Γ( λ ) 2 k ( − 1) k 1 � α � 2 k � Γ( λ − k − s 2 )Γ( k + s = 2 ) ( k !) 2 2Γ( λ ) 2 k � = Γ( s 2 )Γ( λ − s � � s α 2 2 ) � 2 1 F 2 � 1 , 1 − λ + s 2Γ( λ ) 4 � 2 Armin Straub On the method of brackets

  34. The method of brackets Examples A Feynman diagram Troubles RMT Distributional A Bessel integral — the contributions � ∞ x s − 1 J 0 ( αx ) (1 + x 2 ) λ d x 0 1 � α � 2 k 1 � = φ k,n,m Γ( k + 1) � n + m + λ � � 2 m + 2 k + s � Γ( λ ) 2 k,n,m � � � ◮ k free: Γ( s 2 )Γ( λ − s s α 2 2 ) � 2 1 F 2 � 1 , 1 − λ + s 2Γ( λ ) 4 � 2 Armin Straub On the method of brackets

  35. The method of brackets Examples A Feynman diagram Troubles RMT Distributional A Bessel integral — the contributions � ∞ x s − 1 J 0 ( αx ) (1 + x 2 ) λ d x 0 1 � α � 2 k 1 � = φ k,n,m Γ( k + 1) � n + m + λ � � 2 m + 2 k + s � Γ( λ ) 2 k,n,m � � � ◮ k free: Γ( s 2 )Γ( λ − s s α 2 2 ) � 2 1 F 2 � 1 , 1 − λ + s 2Γ( λ ) 4 � 2 � Γ( − λ + s � � α 2 2 ) � α � 2 λ − s λ � ◮ n free: 2 ) 1 F 2 � 2Γ( λ + 1 − s 1 + λ − s 2 , 1 + λ − s 2 4 � 2 Armin Straub On the method of brackets

  36. The method of brackets Examples A Feynman diagram Troubles RMT Distributional A Bessel integral — the contributions � ∞ x s − 1 J 0 ( αx ) (1 + x 2 ) λ d x 0 1 � α � 2 k 1 � = φ k,n,m Γ( k + 1) � n + m + λ � � 2 m + 2 k + s � Γ( λ ) 2 k,n,m � � � ◮ k free: Γ( s 2 )Γ( λ − s s α 2 2 ) � 2 1 F 2 � 1 , 1 − λ + s 2Γ( λ ) 4 � 2 � Γ( − λ + s � � α 2 2 ) � α � 2 λ − s λ � ◮ n free: 2 ) 1 F 2 � 2Γ( λ + 1 − s 1 + λ − s 2 , 1 + λ − s 2 4 � 2 � − 2 m − s Γ( m + λ )Γ( m + s ( − 1) m � α 2 ) 1 � ◮ m free: Γ(1 − m − s 2Γ( λ ) m ! 2 2 ) m This series diverges. Armin Straub On the method of brackets

  37. The method of brackets Examples A Feynman diagram Troubles RMT Distributional A Bessel integral — harvesting Theorem � ∞ � � � (1 + x 2 ) λ d x = Γ( s 2 )Γ( λ − s x s − 1 s α 2 2 ) � 2 J 0 ( αx ) 1 F 2 � 1 , 1 − λ + s 2Γ( λ ) 4 � 0 2 � � � Γ( − λ + s α 2 � α � 2 λ − s 2 ) λ � + 2 ) 1 F 2 � 2Γ( λ + 1 − s 1 + λ − s 2 , 1 + λ − s 2 4 � 2 Armin Straub On the method of brackets

  38. The method of brackets Examples A Feynman diagram Troubles RMT Distributional A Bessel integral — harvesting Theorem � ∞ � � � (1 + x 2 ) λ d x = Γ( s 2 )Γ( λ − s x s − 1 s α 2 2 ) � 2 J 0 ( αx ) 1 F 2 � 1 , 1 − λ + s 2Γ( λ ) 4 � 0 2 � � � Γ( − λ + s α 2 � α � 2 λ − s 2 ) λ � + 2 ) 1 F 2 � 2Γ( λ + 1 − s 1 + λ − s 2 , 1 + λ − s 2 4 � 2 Corollary ( s = 2 ) � ∞ � λ K λ ( α ) x � α J 0 ( αx ) (1 + x 2 ) λ +1 d x = 2 λ ! 0 Armin Straub On the method of brackets

  39. The method of brackets Examples A Feynman diagram Troubles RMT Distributional A Bessel integral — harvesting Theorem � ∞ � � � (1 + x 2 ) λ d x = Γ( s 2 )Γ( λ − s x s − 1 s α 2 2 ) � 2 J 0 ( αx ) 1 F 2 � 1 , 1 − λ + s 2Γ( λ ) 4 � 0 2 � � � Γ( − λ + s α 2 � α � 2 λ − s 2 ) λ � + 2 ) 1 F 2 � 2Γ( λ + 1 − s 1 + λ − s 2 , 1 + λ − s 2 4 � 2 Corollary ( s = 2 ) � ∞ � λ K λ ( α ) x � α J 0 ( αx ) (1 + x 2 ) λ +1 d x = 2 λ ! 0 Corollary � ∞ x (1 + x 2 ) 3 / 2 d x = e − α J 0 ( αx ) 0 Armin Straub On the method of brackets

  40. � � � � � � The method of brackets Examples A Feynman diagram Troubles RMT Distributional A Feynman diagram P 1 � � � � a 1 � � a 3 P 2 � � � � � � a 2 � � � � P 3 ◮ Propagator associated to the index a 1 has mass m 2 = ( P 1 + P 3 ) 2 = s ◮ P 2 1 = P 2 3 = 0 and P 2 Armin Straub On the method of brackets

  41. � � � � � � The method of brackets Examples A Feynman diagram Troubles RMT Distributional A Feynman diagram P 1 � � � � a 1 � � a 3 P 2 � � � � � � a 2 � � � � P 3 ◮ Propagator associated to the index a 1 has mass m 2 = ( P 1 + P 3 ) 2 = s ◮ P 2 1 = P 2 3 = 0 and P 2 ◮ D -dimensional representation in Minkowski space is given by � d D q 1 G = [( P 1 + q ) 2 − m 2 ] a 1 [( P 3 − q ) 2 ] a 2 [ q 2 ] a 3 . iπ D/ 2 E. E. Boos and A. I. Davydychev. “A method for evaluating massive Feynman integrals.” Jour. Phys. A , 41 , 1991. Armin Straub On the method of brackets

  42. The method of brackets Examples A Feynman diagram Troubles RMT Distributional The associated Feynman integral ◮ Schwinger parametrization leads to G = ( − 1) − D/ 2 H with � 3 j =1 Γ( a j ) ∞ ∞ ∞ x 1 x 2 e x 1 m 2 e − x 1+ x 2+ x 3 s � � � x a 1 − 1 x a 2 − 1 x a 3 − 1 H := ( x 1 + x 2 + x 3 ) D/ 2 d x 1 d x 2 d x 3 . 1 2 3 0 0 0 Armin Straub On the method of brackets

  43. The method of brackets Examples A Feynman diagram Troubles RMT Distributional The associated Feynman integral ◮ Schwinger parametrization leads to G = ( − 1) − D/ 2 H with � 3 j =1 Γ( a j ) ∞ ∞ ∞ x 1 x 2 e x 1 m 2 e − x 1+ x 2+ x 3 s � � � x a 1 − 1 x a 2 − 1 x a 3 − 1 H := ( x 1 + x 2 + x 3 ) D/ 2 d x 1 d x 2 d x 3 . 1 2 3 0 0 0 ◮ First x n 1 + n 2 x n 2 x 1+ x 2+ x 3 s = x 1 x 2 � e x 1 m 2 e − φ { n } ( − 1) n 1 m 2 n 1 s n 2 1 2 ( x 1 + x 2 + x 3 ) n 2 n 1 ,n 2 Armin Straub On the method of brackets

  44. The method of brackets Examples A Feynman diagram Troubles RMT Distributional The associated Feynman integral ◮ Schwinger parametrization leads to G = ( − 1) − D/ 2 H with � 3 j =1 Γ( a j ) ∞ ∞ ∞ x 1 x 2 e x 1 m 2 e − x 1+ x 2+ x 3 s � � � x a 1 − 1 x a 2 − 1 x a 3 − 1 H := ( x 1 + x 2 + x 3 ) D/ 2 d x 1 d x 2 d x 3 . 1 2 3 0 0 0 ◮ First x n 1 + n 2 x n 2 x 1+ x 2+ x 3 s = x 1 x 2 � e x 1 m 2 e − φ { n } ( − 1) n 1 m 2 n 1 s n 2 1 2 ( x 1 + x 2 + x 3 ) n 2 n 1 ,n 2 ◮ Then expand � D � 1 2 + n 2 + n 3 + n 4 + n 5 � φ { n } x n 3 1 x n 4 2 x n 5 ( x 1 + x 2 + x 3 ) D/ 2+ n 2 = 3 Γ( D 2 + n 2 ) n 3 ,n 4 ,n 5 Armin Straub On the method of brackets

  45. The method of brackets Examples A Feynman diagram Troubles RMT Distributional Evaluation ◮ The resulting bracket series is � D � 2 + n 2 + n 3 + n 4 + n 5 � φ { n } ( − m 2 ) n 1 s n 2 H = Γ( D 2 + n 2 ) { n } × � a 1 + n 1 + n 2 + n 3 � � a 2 + n 2 + n 4 � � a 3 + n 5 � . Armin Straub On the method of brackets

  46. The method of brackets Examples A Feynman diagram Troubles RMT Distributional Evaluation ◮ The resulting bracket series is � D � 2 + n 2 + n 3 + n 4 + n 5 � φ { n } ( − m 2 ) n 1 s n 2 H = Γ( D 2 + n 2 ) { n } × � a 1 + n 1 + n 2 + n 3 � � a 2 + n 2 + n 4 � � a 3 + n 5 � . ◮ Possible choices for free variables are n 1 , n 2 , and n 4 . Armin Straub On the method of brackets

  47. The method of brackets Examples A Feynman diagram Troubles RMT Distributional Evaluation ◮ The resulting bracket series is � D � 2 + n 2 + n 3 + n 4 + n 5 � φ { n } ( − m 2 ) n 1 s n 2 H = Γ( D 2 + n 2 ) { n } × � a 1 + n 1 + n 2 + n 3 � � a 2 + n 2 + n 4 � � a 3 + n 5 � . ◮ Possible choices for free variables are n 1 , n 2 , and n 4 . ◮ The series associated to n 2 converges for | s m 2 | < 1 : Theorem � � � a 1 + a 2 + a 3 − D 2 , a 2 s � H = η 2 · 2 F 1 � D m 2 � 2 with η 2 defined by � � � � D a 1 + a 2 + a 3 − D 2 − a 1 − a 2 − a 3 Γ( a 2 )Γ( a 3 )Γ 2 − a 2 − a 3 Γ − m 2 � D 2 � η 2 = . � � D Γ 2 Armin Straub On the method of brackets

  48. The method of brackets Examples A Feynman diagram Troubles RMT Distributional Evaluation II ◮ Similarly, the series associated to n 1 , n 4 converges for | m 2 s | < 1 : Theorem � � � a 1 + a 2 + a 3 − D m 2 2 , 1 + a 1 + a 2 + a 3 − D � H = η 1 · 2 F 1 � 1 + a 1 + a 3 − D s � 2 � � � 1 + a 2 − D m 2 2 , a 2 � + η 4 · 2 F 1 � 1 − a 1 − a 3 + D s � 2 with η 1 , η 4 defined by � � � � � � a 1 + a 2 + a 3 − D D D 2 − a 1 − a 2 − a 3 Γ( a 3 )Γ Γ 2 − a 1 − a 3 Γ 2 − a 2 − a 3 2 D η 1 = s , Γ ( D − a 1 − a 2 − a 3 ) � � � � a 1 + a 3 − D D 2 − a 1 − a 3 Γ( a 2 )Γ( a 3 )Γ Γ 2 − a 2 − a 3 − m 2 � D 2 η 4 = s − a 2 � . � � D Γ 2 − a 2 Armin Straub On the method of brackets

  49. The method of brackets Examples A Feynman diagram Troubles RMT Distributional Evaluation III ◮ Specialize to a 1 = a 2 = a 3 = 1 so that ∞ ∞ ∞ x 1 x 2 e x 1 m 2 e − x 1+ x 2+ x 3 s � � � H = ( x 1 + x 2 + x 3 ) D/ 2 d x 1 d x 2 d x 3 . 0 0 0 Armin Straub On the method of brackets

  50. The method of brackets Examples A Feynman diagram Troubles RMT Distributional Evaluation III ◮ Specialize to a 1 = a 2 = a 3 = 1 so that ∞ ∞ ∞ x 1 x 2 e x 1 m 2 e − x 1+ x 2+ x 3 s � � � H = ( x 1 + x 2 + x 3 ) D/ 2 d x 1 d x 2 d x 3 . 0 0 0 ◮ Then with D = 4 − 2 ǫ : Corollary For | s m 2 | < 1 , � � 1 + ǫ, 1 � s � H = ( − m 2 ) − 1 − ǫ Γ( ǫ − 1) 2 F 1 . � m 2 2 − ǫ � Corollary For | s m 2 | > 1 , � ǫ, 1 � � � − 2 ǫ � H = s − 1 − ǫ Γ( − ǫ ) 2 Γ(1 + ǫ ) 1 − m 2 m 2 − m − 2 ǫ Γ( ǫ ) � ǫs 2 F 1 . � Γ(1 − 2 ǫ ) s 1 − ǫ s � Armin Straub On the method of brackets

  51. The method of brackets Examples A Feynman diagram Troubles RMT Distributional Thoughts ◮ The method of brackets produces evaluations for the different regions of the kinematic variables. ◮ Alternative to introducing Mellin-Barnes representations ◮ Most aspects of this process are automatable. ◮ Karen Kohl is working on an implementation in SAGE. Armin Straub On the method of brackets

  52. The method of brackets Examples A Feynman diagram Troubles RMT Distributional Ising Integrals ◮ Studied by Bailey, Borwein, Crandall: � ∞ � ∞ C n,k = 4 1 d u 1 · · · d u n · · · �� n � k +1 n ! u 1 u n 0 0 j =1 ( u j + 1 /u j ) Armin Straub On the method of brackets

  53. The method of brackets Examples A Feynman diagram Troubles RMT Distributional Ising Integrals ◮ Studied by Bailey, Borwein, Crandall: � ∞ � ∞ C n,k = 4 1 d u 1 · · · d u n · · · �� n � k +1 n ! u 1 u n 0 0 j =1 ( u j + 1 /u j ) � ∞ = 2 n − k +1 t k K n 0 ( t ) d t n ! k ! 0 D. H. Bailey, J. M. Borwein and R. E. Crandall. “Integrals of the Ising class.” Jour. Phys. A , 39 , 2006. Armin Straub On the method of brackets

  54. The method of brackets Examples A Feynman diagram Troubles RMT Distributional Ising Integrals ◮ Studied by Bailey, Borwein, Crandall: � ∞ � ∞ C n,k = 4 1 d u 1 · · · d u n · · · �� n � k +1 n ! u 1 u n 0 0 j =1 ( u j + 1 /u j ) � ∞ = 2 n − k +1 t k K n 0 ( t ) d t n ! k ! 0 ◮ C 1 , 1 = 2 , C 2 , 1 = 1 , C 3 , 1 = L − 3 (2) , C 4 , 1 = 7 12 ζ (3) D. H. Bailey, J. M. Borwein and R. E. Crandall. “Integrals of the Ising class.” Jour. Phys. A , 39 , 2006. Armin Straub On the method of brackets

  55. The method of brackets Examples A Feynman diagram Troubles RMT Distributional Ising Integrals ◮ Studied by Bailey, Borwein, Crandall: � ∞ � ∞ C n,k = 4 1 d u 1 · · · d u n · · · �� n � k +1 n ! u 1 u n 0 0 j =1 ( u j + 1 /u j ) � ∞ = 2 n − k +1 t k K n 0 ( t ) d t n ! k ! 0 ◮ C 1 , 1 = 2 , C 2 , 1 = 1 , C 3 , 1 = L − 3 (2) , C 4 , 1 = 7 12 ζ (3) , C 5 , 1 =?? D. H. Bailey, J. M. Borwein and R. E. Crandall. “Integrals of the Ising class.” Jour. Phys. A , 39 , 2006. Armin Straub On the method of brackets

  56. The method of brackets Examples A Feynman diagram Troubles RMT Distributional Ising Integrals — n = 2 � ∞ � ∞ d x d y C 2 ,k = 2 xy ( x + 1 /x + y + 1 /y ) k +1 0 0 Armin Straub On the method of brackets

  57. The method of brackets Examples A Feynman diagram Troubles RMT Distributional Ising Integrals — n = 2 � ∞ � ∞ d x d y C 2 ,k = 2 xy ( x + 1 /x + y + 1 /y ) k +1 0 0 = 2 � φ { n } � n 1 + n 2 + n 3 + n 4 + k + 1 � � n 1 − n 3 � � n 2 − n 4 � k ! { n } Armin Straub On the method of brackets

  58. The method of brackets Examples A Feynman diagram Troubles RMT Distributional Ising Integrals — n = 2 � ∞ � ∞ d x d y C 2 ,k = 2 xy ( x + 1 /x + y + 1 /y ) k +1 0 0 = 2 � φ { n } � n 1 + n 2 + n 3 + n 4 + k + 1 � � n 1 − n 3 � � n 2 − n 4 � k ! { n } ◮ 4 indices, 3 brackets: 1 free variable Armin Straub On the method of brackets

  59. The method of brackets Examples A Feynman diagram Troubles RMT Distributional Ising Integrals — n = 2 � ∞ � ∞ d x d y C 2 ,k = 2 xy ( x + 1 /x + y + 1 /y ) k +1 0 0 = 2 � φ { n } � n 1 + n 2 + n 3 + n 4 + k + 1 � � n 1 − n 3 � � n 2 − n 4 � k ! { n } ◮ 4 indices, 3 brackets: 1 free variable ◮ n 1 free: n ∗ 3 = n 1 and n ∗ 2 = n ∗ 4 = − n 1 − k +1 2 2 � φ n 1 Γ( − n ∗ 2 )Γ( − n ∗ 3 )Γ( − n ∗ 4 ) k ! n 1 Armin Straub On the method of brackets

  60. The method of brackets Examples A Feynman diagram Troubles RMT Distributional Ising Integrals — n = 2 � ∞ � ∞ d x d y C 2 ,k = 2 xy ( x + 1 /x + y + 1 /y ) k +1 0 0 = 2 � φ { n } � n 1 + n 2 + n 3 + n 4 + k + 1 � � n 1 − n 3 � � n 2 − n 4 � k ! { n } ◮ 4 indices, 3 brackets: 1 free variable ◮ n 1 free: n ∗ 3 = n 1 and n ∗ 2 = n ∗ 4 = − n 1 − k +1 2 2 � φ n 1 Γ( − n ∗ 2 )Γ( − n ∗ 3 )Γ( − n ∗ 4 ) k ! n 1 ( − 1) n 1 = 2 � 2 ) 2 Γ( − n 1 ) Γ( n 1 + 1)Γ( n 1 + k +1 k ! n 1 Armin Straub On the method of brackets

  61. The method of brackets Examples A Feynman diagram Troubles RMT Distributional Ising Integrals — n = 2 � ∞ � ∞ d x d y C 2 ,k = 2 xy ( x + 1 /x + y + 1 /y ) k +1 0 0 = 2 � φ { n } � n 1 + n 2 + n 3 + n 4 + k + 1 � � n 1 − n 3 � � n 2 − n 4 � k ! { n } ◮ 4 indices, 3 brackets: 1 free variable ◮ n 1 free: n ∗ 3 = n 1 and n ∗ 2 = n ∗ 4 = − n 1 − k +1 2 2 � φ n 1 Γ( − n ∗ 2 )Γ( − n ∗ 3 )Γ( − n ∗ 4 ) k ! n 1 ( − 1) n 1 = 2 � 2 ) 2 Γ( − n 1 ) Γ( n 1 + 1)Γ( n 1 + k +1 k ! n 1 ◮ No luck for all choices of free variables. Armin Straub On the method of brackets

  62. The method of brackets Examples A Feynman diagram Troubles RMT Distributional Ising Integrals — perturbing ◮ C 2 ,k is the case ε → 0 of � ∞ � ∞ d x d y 2 x 1 − ε y ( x + 1 /x + y + 1 /y ) k +1 0 0 = 2 � φ { n } � n 1 + n 2 + n 3 + n 4 + k + 1 � � n 1 − n 3 + ε � � n 2 − n 4 � k ! { n } Armin Straub On the method of brackets

  63. The method of brackets Examples A Feynman diagram Troubles RMT Distributional Ising Integrals — perturbing ◮ C 2 ,k is the case ε → 0 of � ∞ � ∞ d x d y 2 x 1 − ε y ( x + 1 /x + y + 1 /y ) k +1 0 0 = 2 � φ { n } � n 1 + n 2 + n 3 + n 4 + k + 1 � � n 1 − n 3 + ε � � n 2 − n 4 � k ! { n } ◮ n 1 free: n ∗ 3 = n 1 + ε and n ∗ 2 = n ∗ 4 = − n 1 − k +1+ ε 2 2 � φ n 1 Γ( − n ∗ 2 )Γ( − n ∗ 3 )Γ( − n ∗ 4 ) k ! n 1 ( − 1) n 1 = 2 � ) 2 Γ( − n 1 − ε ) Γ( n 1 + 1)Γ( n 1 + k +1+ ε 2 k ! n 1 Armin Straub On the method of brackets

  64. The method of brackets Examples A Feynman diagram Troubles RMT Distributional Ising Integrals — perturbing ◮ C 2 ,k is the case ε → 0 , A → 1 of � ∞ � ∞ d x d y 2 x 1 − ε y ( Ax + 1 /x + y + 1 /y ) k +1 0 0 = 2 � φ { n } A n 1 � n 1 + n 2 + n 3 + n 4 + k + 1 � � n 1 − n 3 + ε � � n 2 − n 4 � k ! { n } ◮ n 1 free: n ∗ 3 = n 1 + ε and n ∗ 2 = n ∗ 4 = − n 1 − k +1+ ε 2 2 � φ n 1 A n 1 Γ( − n ∗ 2 )Γ( − n ∗ 3 )Γ( − n ∗ 4 ) k ! n 1 ( − 1) n 1 = 2 � Γ( n 1 + 1) A n 1 Γ( n 1 + k +1+ ε ) 2 Γ( − n 1 − ε ) 2 k ! n 1 Armin Straub On the method of brackets

  65. The method of brackets Examples A Feynman diagram Troubles RMT Distributional Ising Integrals — perturbing ◮ C 2 ,k is the case ε → 0 , A → 1 of � ∞ � ∞ d x d y 2 x 1 − ε y ( Ax + 1 /x + y + 1 /y ) k +1 0 0 = 2 � φ { n } A n 1 � n 1 + n 2 + n 3 + n 4 + k + 1 � � n 1 − n 3 + ε � � n 2 − n 4 � k ! { n } ◮ n 1 free: n ∗ 3 = n 1 + ε and n ∗ 2 = n ∗ 4 = − n 1 − k +1+ ε 2 2 � φ n 1 A n 1 Γ( − n ∗ 2 )Γ( − n ∗ 3 )Γ( − n ∗ 4 ) k ! n 1 ( − 1) n 1 = 2 � Γ( n 1 + 1) A n 1 Γ( n 1 + k +1+ ε ) 2 Γ( − n 1 − ε ) 2 k ! n 1 ◮ Combined with n 3 : � � � 1 + ε � � 1 − ε � 2 , 1 + ε 2 , 1 − ε 2 + 2 � � 2 ) 22 F 1 k ! A − ε Γ( ε )Γ(1 − ε 2 ) 22 F 1 k !Γ( − ε )Γ(1 + ε 2 2 � A � A � � 1 + ε 1 − ε Armin Straub On the method of brackets

  66. The method of brackets Examples A Feynman diagram Troubles RMT Distributional Ising Integrals — minding form � ∞ � ∞ d x d y C 2 ,k = 2 xy ( x + 1 /x + y + 1 /y ) k +1 0 0 Armin Straub On the method of brackets

  67. The method of brackets Examples A Feynman diagram Troubles RMT Distributional Ising Integrals — minding form � ∞ � ∞ d x d y C 2 ,k = 2 xy ( x + 1 /x + y + 1 /y ) k +1 0 0 � ∞ � ∞ ( xy ) k d x d y = 2 ( xy [ x + y ] + [ x + y ]) k +1 0 0 Armin Straub On the method of brackets

  68. The method of brackets Examples A Feynman diagram Troubles RMT Distributional Ising Integrals — minding form � ∞ � ∞ d x d y C 2 ,k = 2 xy ( x + 1 /x + y + 1 /y ) k +1 0 0 � ∞ � ∞ ( xy ) k d x d y = 2 ( xy [ x + y ] + [ x + y ]) k +1 0 0 � � = 2 � φ { n } ( xy ) n 1 + k ( x + y ) n 1 + n 2 � n 1 + n 2 + k + 1 � d x d y k ! n 1 ,n 2 Armin Straub On the method of brackets

  69. The method of brackets Examples A Feynman diagram Troubles RMT Distributional Ising Integrals — minding form � ∞ � ∞ d x d y C 2 ,k = 2 xy ( x + 1 /x + y + 1 /y ) k +1 0 0 � ∞ � ∞ ( xy ) k d x d y = 2 ( xy [ x + y ] + [ x + y ]) k +1 0 0 � � = 2 � φ { n } ( xy ) n 1 + k ( x + y ) n 1 + n 2 � n 1 + n 2 + k + 1 � d x d y k ! n 1 ,n 2 = 2 φ { n } � n 1 + n 2 + k + 1 � � n 3 + n 4 − n 1 − n 2 � � k ! Γ( − n 1 − n 2 ) { n } × � n 1 + n 3 + k + 1 � � n 1 + n 4 + k + 1 � Armin Straub On the method of brackets

  70. The method of brackets Examples A Feynman diagram Troubles RMT Distributional Ising Integrals — minding form � ∞ � ∞ d x d y C 2 ,k = 2 xy ( x + 1 /x + y + 1 /y ) k +1 0 0 � ∞ � ∞ ( xy ) k d x d y = 2 ( xy [ x + y ] + [ x + y ]) k +1 0 0 � � = 2 � φ { n } ( xy ) n 1 + k ( x + y ) n 1 + n 2 � n 1 + n 2 + k + 1 � d x d y k ! n 1 ,n 2 = 2 φ { n } � n 1 + n 2 + k + 1 � � n 3 + n 4 − n 1 − n 2 � � k ! Γ( − n 1 − n 2 ) { n } × � n 1 + n 3 + k + 1 � � n 1 + n 4 + k + 1 � = Γ ( − n ∗ 1 ) Γ ( − n ∗ 2 ) Γ ( − n ∗ 3 ) Γ ( − n ∗ 4 ) Γ( k + 1)Γ ( − n ∗ 1 − n ∗ 2 ) ◮ n ∗ 1 = n ∗ 2 = n ∗ 3 = n ∗ 4 = − k +1 2 Armin Straub On the method of brackets

  71. The method of brackets Examples A Feynman diagram Troubles RMT Distributional Ising Integrals — minding form � ∞ � ∞ d x d y C 2 ,k = 2 xy ( x + 1 /x + y + 1 /y ) k +1 0 0 � ∞ � ∞ ( xy ) k d x d y = 2 ( xy [ x + y ] + [ x + y ]) k +1 0 0 � � = 2 � φ { n } ( xy ) n 1 + k ( x + y ) n 1 + n 2 � n 1 + n 2 + k + 1 � d x d y k ! n 1 ,n 2 = 2 φ { n } � n 1 + n 2 + k + 1 � � n 3 + n 4 − n 1 − n 2 � � k ! Γ( − n 1 − n 2 ) { n } × � n 1 + n 3 + k + 1 � � n 1 + n 4 + k + 1 � � k +1 � 4 = Γ ( − n ∗ 1 ) Γ ( − n ∗ 2 ) Γ ( − n ∗ 3 ) Γ ( − n ∗ = Γ 4 ) 2 Γ( k + 1) 2 . Γ( k + 1)Γ ( − n ∗ 1 − n ∗ 2 ) ◮ n ∗ 1 = n ∗ 2 = n ∗ 3 = n ∗ 4 = − k +1 2 Armin Straub On the method of brackets

  72. The method of brackets Examples A Feynman diagram Troubles RMT Distributional Challenges ◮ The form of the integrand makes a huge difference. How can it be automatically optimized? Armin Straub On the method of brackets

  73. The method of brackets Examples A Feynman diagram Troubles RMT Distributional Challenges ◮ The form of the integrand makes a huge difference. How can it be automatically optimized? ◮ More complicated integrals/bracket series need to be perturbed. How to automatize the insertion of the necessary parameters? Armin Straub On the method of brackets

  74. The method of brackets Examples A Feynman diagram Troubles RMT Distributional The method of brackets � ∞ x s − 1 d x � s � := 0 Rule (Multinomial) 1 � s + m 1 + · · · + m r � � φ { m } a m 1 · · · a m r ( a 1 + a 2 + · · · + a r ) s = r 1 Γ( s ) m 1 ,...,m r Rule (Evaluation) � φ { n } f ( n 1 , . . . , n r ) � a 11 n 1 + · · · a 1 r n r + b 1 � · · · � a r 1 n 1 + · · · a rr n r + b r � 1 { n } | det | f ( n ∗ 1 , . . . , n ∗ r )Γ( − n ∗ 1 ) · · · Γ( − n ∗ = r ) , Rule (Combining) If there are more summation indices than brackets, free variables are chosen. Each choice produces a series. Those converging in a common region are added. Armin Straub On the method of brackets

  75. The method of brackets Examples A Feynman diagram Troubles RMT Distributional Ramanujan’s Master Theorem Rule φ n λ ( n ) � an + b � = 1 � | a | λ ( n ∗ )Γ( − n ∗ ) , n where n ∗ is the solution of the equation an + b = 0 . Armin Straub On the method of brackets

  76. The method of brackets Examples A Feynman diagram Troubles RMT Distributional Ramanujan’s Master Theorem Rule φ n λ ( n ) � an + b � = 1 � | a | λ ( n ∗ )Γ( − n ∗ ) , n where n ∗ is the solution of the equation an + b = 0 . ◮ Therefore: � ∞ � x s − 1 f ( x ) d x = φ n λ ( n ) � n + s � 0 n ∞ ( − 1) n � λ ( n ) x n f ( x ) = n ! n =0 Armin Straub On the method of brackets

  77. The method of brackets Examples A Feynman diagram Troubles RMT Distributional Ramanujan’s Master Theorem Rule φ n λ ( n ) � an + b � = 1 � | a | λ ( n ∗ )Γ( − n ∗ ) , n where n ∗ is the solution of the equation an + b = 0 . ◮ Therefore: � ∞ � x s − 1 f ( x ) d x = φ n λ ( n ) � n + s � = λ ( − s )Γ( s ) 0 n ∞ ( − 1) n � λ ( n ) x n f ( x ) = n ! n =0 ◮ This is Ramanujan’s Master Theorem. Armin Straub On the method of brackets

  78. The method of brackets Examples A Feynman diagram Troubles RMT Distributional A joke in the sense of Littlewood Theorem (Ramanujan’s Master Theorem) � ∞ � � 1! λ (1) + x 2 λ (0) − x x s − 1 2! λ (2) − · · · d x = Γ( s ) λ ( − s ) 0 ◮ Nearly discovered as early as 1847 by Glaisher and O’Kinealy. Armin Straub On the method of brackets

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend