diagram rewriting examples and theory
play

Diagram Rewriting: Examples and Theory Yves Lafont CNRS Institut - PowerPoint PPT Presentation

Diagram Rewriting: Examples and Theory Yves Lafont CNRS Institut de Mathmatiques de Luminy Universit de la Mditerrane (Aix-Marseille 2) Hagenberg, 14 July 2008 Introduction Planar diagrams are 2-dimensional words. Terms can


  1. Diagram Rewriting: Examples and Theory Yves Lafont CNRS – Institut de Mathématiques de Luminy Université de la Méditerranée (Aix-Marseille 2) Hagenberg, 14 July 2008

  2. Introduction ◮ Planar diagrams are 2-dimensional words. ◮ Terms can be encoded as diagrams (Burroni 91). ◮ Diagrams are related to proof nets / interaction nets. ◮ A word reduction can be seen as a planar diagram. ◮ Many other examples (braids, knots, circuits, . . . ).

  3. Planar diagrams Inputs/outputs: φ Sequential and parallel composition: φ ψ φ ψ Laws of associativity, units, and interchange: φ ψ = = φ ψ ψ φ

  4. Classification of interpretations Basic case (control flow): + (disjoint union) f : p → q ( p = { 1 , . . . , p } = 1 + · · · + 1 ) Classical case (data flow): × (Cartesian product) f : B p → B q ( B = { 0 , 1 } = 1 + 1 , B p = B × · · · × B ) Linear case: ⊕ (direct sum) f : Z p 2 → Z q ( Z 2 = { 0 , 1 } , Z p 2 = Z 2 ⊕ · · · ⊕ Z 2 ) 2 Quantum case: ⊗ (tensor product) f : B ⊗ p → B ⊗ q ( B = C 2 = C ⊕ C , B ⊗ p = B ⊗ · · · ⊗ B )

  5. Example 1: S (finite permutations) Generator: Relations: = = Theorem: ◮ Any finite permutation is a product of transpositions: · · · · · · ◮ Two diagrams define the same permutation if and only if they are equivalent modulo the above relations.

  6. Canonical forms Grammar for canonical forms: · · · · · · is void or · · · · · · · · · · · · · · · · · · is or · · · · · · Lemma: ◮ Any permutation corresponds to a unique canonical form. ◮ Any diagram reduces to a canonical form by these rules:

  7. Proof of the lemma By double induction on the width (wires) and the size (gates). There are four cases: · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

  8. Diagrams versus words Theorem: The symmetric group S n is presented by the generators σ i (for 1 ≤ i < n ) and the following relations: σ 2 i = 1 , σ i σ i + 1 σ i = σ i + 1 σ i σ i + 1 , σ i σ j = σ j σ i (for i + 1 < j ). Diagrammatic interpretation of relation σ 2 i = 1: = · · · · · · · · · · · · Diagrammatic interpretation of relation σ i σ j = σ j σ i : · · · · · · · · · = · · · · · · · · ·

  9. Rewriting Theorem: This rewrite system is noetherian and confluent. ◮ Termination is straightforward. ◮ Confluence follows from the previous results. What are the critical peaks?

  10. Confluence Confluence of critical peaks:

  11. Global conflicts Here, there is one global conflict: · · · · · · φ · · · where φ is or · · · · · · · · · · · · It suffices indeed to consider the case where φ is canonical: · · · · · · φ ′ φ · · · · · · ∗ · · · · · · · · · φ ′ φ ψ · · · · · · · · · ∗ · · · · · · φ ′ φ · · · · · ·

  12. Example 2: F (finite maps) Generators: Relations: = = = = = = =

  13. Rewrite rules for F Termination is proved by using some polynomial interpretation.

  14. The 68 critical peaks for F

  15. Example 3: F op (theory of structural gates) Generators: Relations: = = = = = = =

  16. Terms versus diagrams Theorem (Burroni 91): Any finite equational theory yields a finite presentation. Theorem (Lafont 95): Any finite convergent left linear term rewrite system yields a finite convergent diagram rewrite system. The non linear case is more difficult because of critical peaks.

  17. Example 4: L ( Z 2 ) (linear boolean maps) Generators: x y x x x y y x x x x + y 0 Reversible gates: x y x y x y x y x x + y x + y y x + y x y x + y Decomposition: = = = =

  18. Rewrite rules for L ( Z 2 )

  19. Example 5: GL ( Z 2 ) (linear boolean permutations) Generators: Relations: = = = = = = Rules:

  20. References ◮ Albert Burroni, Higher dimensional word problem (TCS 1993) ◮ Yves Lafont, Towards an algebraic theory of Boolean circuits (JPAA 2003) ◮ Yves Guiraud, Termination Orders for 3-Dimensional Rewriting (JPAA 2006) ◮ Yves Lafont & Pierre Rannou, Diagram rewriting for orthogonal matrices: a study of critical peaks (RTA 2008)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend