course summary thus far
play

Course Summary (thus far) F Neural Encoding What makes a neuron - PDF document

CSE/NEUBEH 528 Modeling Synapses and Networks (Chapter 7) Image from Wikimedia Commons R. Rao, 528: Lecture 8 1 Lecture figures are from Dayan & Abbotts book Course Summary (thus far) F Neural Encoding What makes a neuron fire? (STA,


  1. CSE/NEUBEH 528 Modeling Synapses and Networks (Chapter 7) Image from Wikimedia Commons R. Rao, 528: Lecture 8 1 Lecture figures are from Dayan & Abbott’s book Course Summary (thus far) F Neural Encoding What makes a neuron fire? (STA, covariance analysis) Poisson model of spiking F Neural Decoding Spike-train based decoding of stimulus Stimulus Discrimination based on firing rate Population decoding (Bayesian estimation) F Single Neuron Models RC circuit model of membrane Integrate-and-fire model Conductance-based Models R. Rao, 528: Lecture 8 2

  2. Today’s Agenda F Computation in Networks of Neurons Modeling synaptic inputs From spiking to firing-rate based networks Feedforward Networks Multilayer Networks R. Rao, 528: Lecture 8 3 How do neurons connect to form networks? Using synapses! R. Rao, 528: Lecture 8 4 Image Source: Wikimedia Commons

  3. Synapses on an actual neuron R. Rao, 528: Lecture 8 5 Image Credit: Kennedy lab, Caltech. http://www.its.caltech.edu/~mbkla What do synapses do? Spike Increase or decrease postsynaptic membrane potential R. Rao, 528: Lecture 8 6 Image Source: Wikimedia Commons

  4. An Excitatory Synapse Input spike  Spike Neurotransmitter release (e.g., Glutamate)  Binds to ion channel receptors  Ion channels open  Na+ influx  Depolarization due to EPSP (excitatory postsynaptic potential) R. Rao, 528: Lecture 8 7 Image Source: Wikimedia Commons An Inhibitory Synapse Input spike  Spike Neurotransmitter release (e.g., GABA)  Binds to ion channel receptors  Ion channels open  Cl- influx  Hyperpolarization due to IPSP (inhibitory postsynaptic potential) R. Rao, 528: Lecture 8 8 Image Source: Wikimedia Commons

  5. We want a computational model of the effects of a synapse on the membrane potential V Synapse V How do we do this? R. Rao, 528: Lecture 8 9 Flashback Membrane Model V  dV ( V E ) I    L e c , or equivalently:  m = r m c m = R m C m m dt r A m is the membrane dV      time constant ( V E ) I R m L e m dt R. Rao, 528: Lecture 8 10 Image Source: Dayan & Abbott textbook

  6. How do we model the effects of a synapse on the membrane potential V ? ? Synapse R. Rao, 528: Lecture 8 11 Hint! Hodgkin-Huxley Model K Na dV     i r I R m m m e m dt       4 3 i ( 1 / r )( V E ) g n ( V E ) g m h ( V E ) m m L K , max K Na , max Na E L = -54 mV, E K = -77 mV, E Na = +50 mV R. Rao, 528: Lecture 8 12 Image Source: Dayan & Abbott textbook

  7. Modeling Synaptic Inputs Synaptic V conductance Synapse dV          ( ) ( ) V E r g V E I R m L m s s e m dt  g g P P Probability of postsynaptic channel opening s s , max rel s (= fraction of channels opened) Probability of transmitter release given an input spike R. Rao, 528: Lecture 8 13 Basic Synapse Model F Assume P rel = 1 fraction of F Model the effect of a single spike input on P s channels opened F Kinetic Model of postsynaptic channels:    s Open Closed    s dP      s ( 1 P ) P s s s s dt Opening rate Closing rate Fraction of channels open Fraction of channels closed R. Rao, 528: Lecture 8 14

  8. What does P s look like over time given a spike? t    K ( t ) e s Exponential function K ( t ) gives reasonable fit for some synapses Others can be fit using “Alpha” function: t  P max    K ( t ) t e peak t R. Rao, 528: Lecture 8 15 0  peak Linear Filter Model of a Synapse Synapse Input Spike b Train  b (t)  b ( t ) =  i δ ( t-t i ) ( t i are the input spike times , δ = delta function) Filter for K ( t ) synapse b = Synaptic conductance at b :    g ( t ) g K ( t t ) b b , max i  t t i t        g K ( t ) ( ) d b , max b   R. Rao, 528: Lecture 8 16

  9. Example: Network of Integrate-and-Fire Neurons Excitatory synapses ( E b = 0 mV) Inhibitory synapses ( E b = -80 mV) Synchrony! dV        ( ) ( )( ) V E r g t V E I R Each neuron: m L m b b e m dt     E 70 mV V 54 mV Synapses : Alpha function model L thresh   1 0 ms R. Rao, 528: Lecture 8 17 peak Modeling Networks of Neurons F Option 1: Use spiking neurons Advantages : Model computation and learning based on: Spike Timing Spike Correlations/Synchrony between neurons Disadvantages : Computationally expensive F Option 2: Use neurons with firing-rate outputs (real valued outputs) Advantages : Greater efficiency, scales well to large networks Disadvantages : Ignores spike timing issues F Question: How are these two approaches related? R. Rao, 528: Lecture 8 18

  10. Recall: Linear Filter Model of a Synapse Synapse b Input Spike Train  b (t)  b ( t ) =  i δ ( t-t i ) ( t i are the input spike times , δ = delta function) Filter for K ( t ) synapse b = Synaptic conductance at b :    g ( t ) g K ( t t ) b b , max i  t t i t        g K ( t ) ( ) d b , max b   R. Rao, 528: Lecture 8 19 From a Single Synapse to Multiple Synapses w 1 Synaptic weights w N Spike trains  1 (t)  N (t) N   ( ) ( ) I t I t Total synaptic current s b  b 1 t N         I ( t ) w K ( t ) ( ) d s b b    b 1 R. Rao, 528: Lecture 8 20

  11. From Spiking to Firing Rate Model w 1 Synaptic weights w N Spike trains  1 (t)  N (t) u N (t) Firing rate u 1 (t) t N   Total       Spike train  b (t) I ( t ) w K ( t ) ( ) d s b b synaptic  b 1   current t N        Firing rate u b (t) w K ( t ) u ( ) d b b  1   b R. Rao, 528: Lecture 8 21 Simplifying the Input Current Equation w 1 Synaptic weights w N Weight vector w u N (t) Firing rate u 1 (t) Input vector u t   1  K ( t ) e Suppose synaptic filter K is exponential: s  s t        Differentiating w.r.t. time t , I ( t ) w K ( t ) u ( ) d s b b b   dI      s I w u we get s s b b dt b    w  I u s R. Rao, 528: Lecture 8 22

  12. General Firing-Rate-Based Network Model F is the “activation function” Output firing rate dv     v F ( I ( t )) changes like this: r s dt What happens when: Input current dI        w  ? changes like this: s I u s r s s dt    ? r s Static input? R. Rao, 528: Lecture 8 23 Next Class: Networks F To Do: Homework 3 Finalize a final project topic and partner(s) Email Raj, Adrienne and Rich your topic and partners, or ask to be assigned to a team R. Rao, 528: Lecture 8 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend