counting contingency tables igor pak ucla
play

Counting Contingency Tables Igor Pak, UCLA Combinatorics Seminar, - PowerPoint PPT Presentation

Counting Contingency Tables Igor Pak, UCLA Combinatorics Seminar, OSU, September 17, 2020 1 Contingency tables Fix a = ( a 1 , . . . , a m ), b = ( b 1 , . . . , b n ), a i , b j > 0, s.t. m n a i = b j = N. i =1 j =1 A


  1. Counting Contingency Tables Igor Pak, UCLA Combinatorics Seminar, OSU, September 17, 2020 1

  2. Contingency tables Fix a = ( a 1 , . . . , a m ), b = ( b 1 , . . . , b n ), a i , b j > 0, s.t. m n � � a i = b j = N. i =1 j =1 A contingency table with margins ( a , b ) is an m × n matrix X = ( x ij ), s.t. n m � � x ij = a i , x ij = b j , x ij ≥ 0 ∀ i, j. j =1 i =1 We denote by T ( a , b ) the set of all such matrices, and T( a , b ) := |T ( a , b ) | . Main problem: Compute T( a , b ). That means: formula , algorithm , asymptotics , bounds , etc. More precisely: Do your best!

  3. Examples: a = b = (1 , 1 , 1) − → T( a , b ) = 6 → T( a , b ) = 13268976 ≈ 1 . 3 × 10 7 a = b = (100 , 100 , 100) − → T( a , b ) ≈ 1 . 1 × 10 59 [Canfield–McKay, 2010] m = n = 10, a = b = (20 , . . . , 20) − → T( a , b ) ≈ 2 . 2 × 10 92 m = n = 30, a = b = (3 , . . . , 3) − → T( a , b ) ≈ 6 . 1 × 10 279 [Beck–Pixton, 2003] m = n = 9, a = b = (10 5 , . . . , 10 5 ) − → T( a , b ) = 1225914276768514 ≈ 1 . 2 × 10 15 [Des Jardins, 1994] m = n = 9, a = (220 , 215 , 93 , 64), b = (108 , 286 , 71 , 127) − T( a , b ) ≈ 4 . 3 × 10 61 a = (13070380 , 18156451 , 13365203 , 20567424), b = (12268303 , 20733257 , 17743591 , 14414307) − → [De Loera, 2009] → T( a , b ) ≈ 1 . 7 × 10 819 [good estimate] m = n = 15, a = b = (10 5 , . . . , 10 5 ) − → T( a , b ) ≈ 6 . 3 × 10 33470 [good estimate] m = n = 100, a = b = (10 3 , . . . , 10 3 ) − m = n = 100, nonuniform margins average 10 − → ??? [can be done via SHM in under 200h CPU time] m = n = 1000, nonuniform margins average 100 − → ??? [currently cannot be done in our lifetime]

  4. More Examples: Permutations : m = n , a = b = (1 , . . . , 1) − → T( a , b ) = n ! Magic squares : m = n , a = b = ( k, . . . , k ) [when k fixed, T( a , b ) is P-recursive] → T( a , b ) = c ( n ), where c ( n ) = n 2 c ( n − 1) − 1 2 n ( n − 1) 2 c ( n − 2), so k = 2 − √ e ( n !) 2 c ( n ) ∼ √ πn k = 3 − → T( a , b ) = n ! v ( n ), where 576 n · v ( n ) = (2880 n 2 − 5760 n + 3456) v ( n − 1) + (324 n 5 − 3564 n 4 + 14148 n 3 − 26028 n 2 + 21312 n − 6192) v ( n − 2) + (81 n 6 − 1377 n 5 + 7209 n 4 − 13203 n 3 − 3402 n 2 + 32076 n − 21384) v ( n − 3) + ( − 81 n 7 + 1944 n 6 − 20232 n 5 + 115578 n 4 − 383283 n 3 + 724230 n 2 − 708372 n + 270216) v ( n − 4) + ( − 72 n 6 + 1440 n 5 − 10890 n 4 + 40500 n 3 − 78678 n 2 + 75780 n − 28080) v ( n − 5) + (81 n 9 − 3321 n 8 + 59004 n 7 − 594054 n 6 + 3718687 n 5 − 14927199 n 4 + 38152096 n 3 − 59311746 n 2 + 50236612 n − 17330160) v ( n − 6) + (72 n 8 − 2520 n 7 + 37347 n 6 − 304479 n 5 + 1484133 n 4 − 4394565 n 3 + 7642248 n 2 − 7039116 n + 2576880) v ( n − 7) + ( − 198 n 9 + 8712 n 8 − 165175 n 7 + 1764196 n 6 − 11643772 n 5 + 48965728 n 4 − 130257475 n 3 + 209370724 n 2 − 182126340 n + 64083600) v ( n − 8) + (36 n 10 − 1944 n 9 + 45884 n 8 − 621504 n 7 + 5330892 n 6 − 30123576 n 5 + 112954596 n 4 − 275612976 n 3 + 415021552 n 2 − 343920960 n + 116928000) v ( n − 9) + ( − 9 n 11 + 585 n 10 − 16800 n 9 + 280800 n 8 − 3027357 n 7 + 22034565 n 6 − 110039130 n 5 + 375129450 n 4 − 849926784 n 3 + 1208298600 n 2 − 958439520 n + 315705600) v ( n − 10) + ( − 7 n 10 + 385 n 9 − 9240 n 8 + 127050 n 7 − 1104411 n 6 + 6314385 n 5 − 23918510 n 4 + 58866500 n 3 − 89275032 n 2 + 74400480 n − 25401600) v ( n − 11) + ( n 11 − 66 n 10 + 1925 n 9 − 32670 n 8 + 357423 n 7 − 2637558 n 6 + 13339535 n 5 − 45995730 n 4 + 105258076 n 3 − 150917976 n 2 + 120543840 n − 39916800) v ( n − 12) , so � n � � 3 n 3 3 πn v ( n ) ∼ e 2 4 e 3 2

  5. Complexity aspects: bad news all around Theorem [Narayanan, 2006] Computing T( a , b ) is #P -complete. Theorem [P.–Panova, 2020+, former folklore conjecture ] Computing T( a , b ) is strongly #P -complete (i.e. for the input a i , b j in unary). Corollary [P.–Panova, 2020+] Computing: ◦ Kostka numbers K λµ and Littlewood–Richardson coefficients c λ µν is strongly #P -complete ◦ Schubert coefficients is #P -complete ◦ Kronecker coefficients g ( λ, µ, ν ) and reduced Kronecker coefficients g ( λ, µ, ν ) is #P -hard Note: The last part is known [Ikenmeyer–Mulmuley–Walter, 2017] and [P.–Panova, 2020], resp. Moral: Asymptotic formulas and approximate counting is the best one can hope for.

  6. Connections and Applications • Random networks: contingency tables ↔ bipartite graphs with fixed degrees Note: graphs with fixed degrees ↔ symmetric binary (0-1) CTs with 0 diagonal, numerous papers on all aspects of these, see e.g. [Wormald, 2018 ICM survey] • Statistics Key observation: Random sampling ← → approximate counting Self-reduction : P ( x 11 ≥ t ) = T( a 1 − t, a 2 , . . . ; b 1 − t, b 2 , . . . ) T( a 1 , a 2 , . . . ; b 1 , b 2 , . . . )

  7. Descendants of Queen Victoria (1819 – 1901) Question: Is there a dependence between Birthday and Deathday of the 82 (dead) descendants? Testing correlation for X = ( x ij ) (after Diaconis–Efron, 1985): • Sample large number N of random samples, compute their χ 2 , • Output fraction a/N , where a = number of samples with χ 2 ≤ χ ( X ).

  8. Birthday–Deathday example analysis: Figure 1. Plot of χ 2 from [Diaconis–Sturmfels] and [Dittmer–Pak] Setup: χ 2 ( X ) ≈ 115 . 56, so p-value = % of tables have χ 2 ≤ 115 . 56 Hypothesis: There is NO dependence between Birthday and Deathday. [Diaconis–Sturmfels, 1998]: From the 10 6 trials of Diaconis–Gangolli MC , they get p ≈ 37 . 75% − → Accept! [Dittmer–P., 2019+]: From the 5 × 10 4 trials using our new SHM MC , we get p ≈ 0 . 10% − → Reject! First Moral: It’s important to get good uniform samples from T ( a , b ). Otherwise, you might actually start to believe that there is NO dependence. Second Moral: Dependence, really??? Ah, well, the model was faulty...

  9. Exact and approximate counting results Below: m ≤ n , a 1 ≥ . . . ≥ a m , b 1 ≥ . . . ≥ b n . ◦ Exact counting in poly-time for m, n = O (1) [Barvinok’93] ◦ Exact counting in poly-time for a 1 , b 1 = O (1) via dynamic programming. ◦ Quasi-poly time approx counting for a 1 /a m , b 1 /b n < 1 . 6 and m = Θ( n ) [Barvinok et al, 2010]. ◦ Poly-time approx counting for m = O (1) [Cryan, Dyer 2003] ◦ Poly-time approx counting for a m = Ω( n 3 / 2 m log m ) and b n = Ω( m 3 / 2 n log n ) [Dyer–Kannan–Mount, 1997], [Morris, 2002] ◦ Poly-time approx counting for a 1 , b 1 = Ω( n 1 / 4 − ε ), ε > 0 and m = Θ( n ) [Dittmer–P., 2019+] ◦ Poly-time approx counting for all a i , b j = Θ( n 1 − ε ), ε > 0 and m = Θ( n ) [Dittmer–P., 2019+] Note: These four are all MCMC based FPFAS.

  10. Diaconis–Gangolli Markov chain (1995) STEP: choose a random 2 × 2 submatrix, and make either of the following changes: +1 − 1 − 1 +1 or − 1 +1 +1 − 1 (stay put if this is impossible). Note: Use hit-and-run for large a 1 , b 1 . Note: Early theoretical results in [Diaconis – Saloff-Coste, 1995], [Chung–Graham–Yau, 1996] Split–Hyper–Merge (SHM) Markov chain [Dittmer–P., 2019+] Idea: Use Burnside processes [Jerrum, 1993] ← probabilistic version of the Burnside Lemma . Lemma: T ( a , b ) is in bijection with the set of orbits of group Σ := Sym( a 1 ) × . . . × Sym( a m ) × Sym( b 1 ) × . . . × Sym( b n ) acting on S N = N × N permutation matrices. Conjecture: For a 1 b 1 ≤ poly( mn ), both DG and SHM Markov chains mix in polynomial time.

  11. Why contingency tables are orbits: 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 Σ α 2 1 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 1 0 0 X 0 1 0 0 0 0 0 0 0 1 M Here X ∈ T (3 , 2; 3 , 2) corresponds to orbit representative M ∈ S 5 under the action of Σ = S 3 × S 2 × S 3 × S 2 . (plot of χ 2 ) Testing SHM chain on the Birthday–Deathday example

  12. Independence heuristic [Good, 1950]: T( a , b ) ≈ G( a , b ), where m n � − 1 � N + mn − 1 � a i + n − 1 � � b j + m − 1 � � � G( a , b ) := . mn − 1 n − 1 m − 1 i =1 j =1 Good’s reasoning [Good, 1976]: Let S ( N, m, n ) be the set of m × n tables with total sum N , so � N + mn − 1 � � = � � � S ( N, m, n ) mn − 1 Observe: m 1 � a i + n − 1 � � P ( X has row sums a ) = , |S ( N, m, n ) | n − 1 i =1 n � b j + m − 1 � 1 � P ( X has column sums b ) = . |S ( N, m, n ) | m − 1 j =1 If these events are asymptotically independent: T( a , b ) |S ( N, m, n ) | = P ( X has row sums a , column sums b ) m n � a i + n − 1 � � b j + m − 1 � 1 1 � � ≈ × . |S ( N, m, n ) | n − 1 |S ( N, m, n ) | m − 1 i =1 j =1 “the conjecture appears to be confirmed” [...] “leaving aside finer points of rigor”. �

  13. Does the independence heuristic work? For the Birthday–Deathday example with N = 592: T( a , b ) = 1 . 226 × 10 15 vs. G( a , b ) = 1 . 211 × 10 15 For the large 4 × 4 case with N = 65159458 [De Loera]: T( a , b ) = 4 . 3 × 10 61 vs. G( a , b ) = 3 . 7 × 10 61 Theorem [Canfield–McKay, 2010] For m = n , a = b = ( k, . . . , k ), k = ω (1), k = O (log n ): T( a , b ) ∼ √ e · G( a , b ) as n → ∞ . Theorem [Greenhill–McKay, 2008] For m = n , a 1 b 1 = o ( N 2 / 3 ): T( a , b ) ∼ √ e · G( a , b ) as n → ∞ . Theorem [Barvinok, 2009] For m = n , a = b = ( Bn, . . . , Bn, n, . . . , n ), with θn sums Bn 1 1 lim n 2 log T( a , b ) > lim n 2 log G( a , b ) for all B > 1 . n →∞ n →∞

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend