cosmological neutrino masses including steriles
play

Cosmological neutrino masses (including steriles) Viviana Niro ITP, - PowerPoint PPT Presentation

Cosmological neutrino masses (including steriles) Viviana Niro ITP, Heidelberg CERN, 30 March, 2017 Neutrinos: the quest for a new physics scale Munich n TR 33 n o B The Dark Universe Heidelberg V. Niro (ITP, Heidelberg) mass in


  1. Cosmological neutrino masses (including steriles) Viviana Niro ITP, Heidelberg CERN, 30 March, 2017 Neutrinos: the quest for a new physics scale Munich n TR 33 n o B The Dark Universe Heidelberg V. Niro (ITP, Heidelberg) ν mass in cosmology CERN 1 / 17

  2. The standard model of cosmology ΛCDM: Standard Model of Cosmology Hubble parameter H 0 ω b ≡ Ω b h 2 Baryon density in the Universe ω cdm ≡ Ω cdm h 2 Cold Dark Matter density in the Universe Optical depth at reionization τ reio Amplitude of scalar power spectrum of primordial fluctua- A S tions at the pivot scale k ∗ = 0 . 05 Mpc − 1 Scalar spectral index of primordial density fluctuations n s � m ν ≡ M ν Sum of of the three active neutrino masses τ reio : CMB photons scattering off electrons, after reionization produced by stars, quasars Planck data in remarkable agreement with ΛCDM model V. Niro (ITP, Heidelberg) ν mass in cosmology CERN 2 / 17

  3. Neutrino mass in cosmology Cosmology provides important information on the sum of neutrino masses M ν → affects the expansion rate of the Universe and the way large-scale structures form and evolve Cosmic Microwave Background (CMB) anisotropies → Early Integrated Sachs Wolfe Effect ISW: change in the temperature of CMB photons due to changing of gravitational potential wells (expansion of the Universe) eISW: when neutrinos become non-relativistic, they influence the time variation of the gravitational potential Gravitational lensing measurements → increasing the neutrino mass suppresses the lensing potential (neutrino masses reduce the amplitude of matter fluctuations on small scales) J. Lesgourgues, L. Perotto, S. Pastor, M. Piat, arXiv:astro-ph/0511735 see talk by J. Lesgourgues and references therein V. Niro (ITP, Heidelberg) ν mass in cosmology CERN 3 / 17

  4. Planck results on neutrino mass (LCDM) Planck TT+lowP (coloured points): M ν < 0 . 72 eV; Planck collaboration, arXiv:1502.01589 Planck TT+lowP+lensing (solid black contours): M ν < 0 . 68 eV; Planck TT+lowP+lensing+BAO (filled contours): M ν < 0 . 25 eV; 75 0.84 H 0 [km s − 1 Mpc − 1 ] 0.80 70 0.76 65 σ 8 0.72 60 0.68 0.64 55 0.60 0.0 0.4 0.8 1.2 1.6 Σ m ν [eV] M ν < 0.49 eV (TT+TE+EE+lowP) M ν < 0.17 eV (TT+TE+EE+lowP+BAO) M ν < 0.59 eV (TT+TE+EE+lowP+lensing) M ν < 0.22 eV (TT+TE+EE+lowP+BAO+lensing) V. Niro (ITP, Heidelberg) ν mass in cosmology CERN 4 / 17

  5. Effect of τ reio prior and extended cosmology τ = 0 . 055 ± 0 . 009 (low-multipole EE data from HFI), Σ m ν < 0 . 14 eV (Planck TT,TE,EE+SimLow+Lensing+BAO) Planck collaboration, arXiv: 1605.02985 1.2 CMB CMB+ τ M ν 0.58 0 58 63 69 0.64 0.75 0.85 0.04 0.088 0.14 H 0 σ 8 τ reio A.Cuesta, Proceedings SEA 2016 Extensions of LCDM model: different parameters can be added to the analysis Example (Planck TT+lowP+lensing+BAO): N eff CDM: M ν < 0.32 eV 95% C.L., ω CDM: M ν < 0.37 eV at 95% C.L. Planck collaboration, arXiv:1502.01589 V. Niro (ITP, Heidelberg) ν mass in cosmology CERN 5 / 17

  6. Galaxy surveys Massive neutrinos lead to a suppression on the matter power spectrum at small scales (neutrinos do not cluster gravitationally on small scales) ⇒ measurements of the full shape of the matter power spectrum are of great importance for neutrino physics: they are able to put tight constraints on the sum of neutrino masses W. Hu, D. J. Eisenstein, M. Tegmark, astro-ph/9712057; J. Lesgourgues, S. Pastor, astro-ph/0603494 1.10 M ν = 0 . 00 eV M ν = 0 . 15 eV 1.05 M ν = 0 . 30 eV P ( k ) /P ( k ) M ν = 0 1.00 0.95 0.90 0.85 0.80 0.02 0.05 0.10 0.20 k ( h Mpc − 1 ) V. Niro (ITP, Heidelberg) ν mass in cosmology CERN 6 / 17

  7. Luminous red galaxies vs emission line galaxies Galaxy bias b 2 : depends on the type of galaxies; marginalised in the analysis CMB15+LRG CMB15+WZ +lensing +lensing CMB15+LRG+BAO CMB15+WZ+BAO +lensing +lensing 0 0.2 0.4 0.6 0.79 0 0.19 0.39 0.58 0.78 M ν [eV] M ν [eV] LRG galaxies WZ galaxies CMB15 + SDSS-DR7 LRG + BAO: 0.13 eV, CMB15 + WZ + BAO: 0.14 eV A.J. Cuesta, VN, L. Verde, arXiv:1511.05983 [astro-ph.CO] V. Niro (ITP, Heidelberg) ν mass in cosmology CERN 7 / 17

  8. Lyman- α data To date the strongest constraint on M ν is provided by the joint analysis of CMB15, BAO and Lyman- α forest data: Palanque-Delabrouille et al., arXiv:1506.05976 [astro-ph.CO] M ν < 0 . 12 eV (95% C . L . ) From CMB13 results: Palanque-Delabrouille et al., arXiv:1410.7244 [astro-ph.CO] M ν < 0 . 15 eV ( including BAO : 0 . 14 eV ) (95% C . L . ) Lyman- α : estimate the matter power spectra from absorption observed in quasar spectra Hydrodynamic simulations to relate neutral hydrogen in the inter-galactic medium with the underlying mass distribution Palanque-Delabrouille et al., arXiv:1506.05976 [astro-ph.CO] V. Niro (ITP, Heidelberg) ν mass in cosmology CERN 8 / 17

  9. BAO and τ reio measurements DR12 CMASS P ( k ) versus BAO datasets: CMB temperature anisotropies, BAO data, up-to-date constraint on τ reio : M ν < 0 . 151 eV 95% C . L . With the addition of Planck high- l polarization data: M ν < 0 . 118 eV 95% C . L . S. Vagnozzi, E. Giusarma, O. Mena, et al., arXiv:1701.08172 [astro-ph.CO] V. Niro (ITP, Heidelberg) ν mass in cosmology CERN 9 / 17

  10. Neutrino hierarchy the neutrino mass hierarchy, normal or inverted, as well as the sum of the three active neutrino masses, are quantities that are still unknown For a zero lightest neutrino mass ( m 0 = 0), the predictions for the sum M ν is: M ν = 58 . 5 ± 0 . 48 meV ( NO ); M ν = 98 . 6 ± 0 . 85 meV ( IO ) with (1 σ uncertainties) S. Hannestadad and T. Schwetz, arXiv:1606.04691 [astro-ph.CO] ∆ m 2 21 = 7 . 49 +0 . 19 − 0 . 17 × 10 − 5 eV 2 ; ∆ m 2 31 = 2 . 484 +0 . 045 − 0 . 048 × 10 − 3 eV 2 ( NO ); ∆ m 2 32 = − 2 . 467 +0 . 041 − 0 . 042 × 10 − 3 eV 2 ( IO ) M. C. Gonzalez-Garcia, M. Maltoni, and T. Schwetz, arXiv:1409.5439; see talk M. C. Gonzalez-Garcia and references therein V. Niro (ITP, Heidelberg) ν mass in cosmology CERN 10 / 17

  11. Neutrino mass ordering and cosmological bounds Posterior odds of IO versus NO p I / p N S. Hannestadad and T. Schwetz, arXiv:1606.04691 [astro-ph.CO] � ∞ π ( O ) dm 0 L ( D | m 0 , O ) 0 p O = � ∞ � ∞ π ( N ) dm 0 L ( D | m 0 , N ) + π ( I ) dm 0 L ( D | m 0 , I ) 0 0 π ( I ) = 0.55; π ( N ) = 0 . 45 ⇒ posterior odds of 1.55:1 for NO vs IO. Posterior likelihood function from Planck+BAO+ H 0 See also discussion in F. Simpson, R. Jimenez, C. Pena-Garay, L. Verde, arXiv:1703.03425 [astro-ph.CO]; T. Schwetz, K. Freese, M. Gerbino et al, arXiv:1703.04585 [astro-ph.CO]; F. Capozzi, E. Di Valentino, E. Lisi, A. Marrone, A. Melchiorri, A. Palazzo, arXiv:1703.04471 [hep-ph] V. Niro (ITP, Heidelberg) ν mass in cosmology CERN 11 / 17

  12. Future surveys expect a sensitivity σ ( M ν ) close to 0.02 eV (1-sigma) around the year 2025 for a survey like Euclid combined with Planck (planned launch date for Euclid 2020) B. Audren, J. Lesgourgues, S. Bird, M. G. Haehnelt and M. Viel, arXiv:1210.2194 CMB satellite of next generation like Core+ combined with Euclid could further improve the sensitivity Other surveys, like DESI, can reach similar sensitivity on M ν . DES can reach a sensitivity σ ( M ν ) close to 0.06 eV A. Font-Ribera, et al., arXiv:1308.4164 [astro-ph.CO] O. Lahav, et al., arXiv:0910.4714 [astro-ph.CO] Good prospects to detect the absolute neutrino mass scale with cosmology V. Niro (ITP, Heidelberg) ν mass in cosmology CERN 12 / 17

  13. Prospects for Euclid S. Hannestadad and T. Schwetz, arXiv:1606.04691 [astro-ph.CO] Posterior likelihood function from simulated future data (EUCLID+Planck CMB), one massive neutrino with m ν = 0 . 06 eV and 2.046 massless neutrinos; gray shaded region: one-sided upper bound on M ν at 95% C.L. Right panel: posterior likelihood as a function of m 0 for NO and IO V. Niro (ITP, Heidelberg) ν mass in cosmology CERN 13 / 17

  14. Degeneracy between H 0 and m ν Correlation between M ν , h , ω cdm with BAO, along different angles than with CMB data BAO-DESI experiment → ratio r s ( z drag ) / D V ( z BAO ) CMB → lensing and angular diameter distance ∆ ω cdm ≃ − 0 . 5∆ ω ν , ∆ h ≃ − 0 . 017(∆ M ν / 1 eV ) ≃ − 1 . 6∆ ω ν ∆ ω cdm ≃ ∆ ω ν , ∆ h ≃ − 0 . 13(∆ M ν / 1 eV ) ≃ − 12∆ ω ν M. Archidiacono, T. Brinckmann, J. Lesgourgues, V. Poulin, arXiv:1610.09852 [astro-ph.CO] V. Niro (ITP, Heidelberg) ν mass in cosmology CERN 14 / 17

  15. Sterile neutrinos m eff = (∆ N eff ) 3 / 4 m TH , m eff = (∆ N eff ) m DW Planck TT+lowP+lensing+BAO: s s m eff N eff < 3 . 7; ν ; sterile < 0 . 38 eV at 95 % C . L . Planck collaboration, arXiv:1502.01589 See talk by C. Giunti on neutrino anomalies and talk by N. Saviano on secret neutrino interactions, and references therein Already using Planck2013+SBL: ∆ N eff ≥ 0 . 86 strongly disfavoured, evidence against the 3+1 model compared to the model with only the 3 active neutrinos J. Bergstrom, M. C. Gonzalez-Garcia, VN, J. Salvado, arXiv:1407.3806 [hep-ph] V. Niro (ITP, Heidelberg) ν mass in cosmology CERN 15 / 17

  16. ν µ disappearance results and cosmology Exclusion regions at 95% CL from Planck, MINOS, IceCube, and the SBN forecast Dashed line: Planck constraint with m 4 calculated using the DW mechanism Dot-dash line: Planck constraint using a large lepton-asymmetry, L = 10 − 2 S. Bridle, J. Elvin-Poole, J. Evans, S. Fernandez, P. Guzowski, S. Soldner-Rembold, 1607.00032 [astro-ph.CO] V. Niro (ITP, Heidelberg) ν mass in cosmology CERN 16 / 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend