some results by energy methods on large time behavior of
play

Some Results by Energy Methods on Large-Time Behavior of Viscous Gas - PowerPoint PPT Presentation

(0) Some Results by Energy Methods on Large-Time Behavior of Viscous Gas Akitaka Matsumura (Osaka University) Taipei, October 29 - November 2, 2012 2012 International Conference on Nonlinear Analysis Evolutionary P.D.E. and Kinetic Theory


  1. (0) Some Results by Energy Methods on Large-Time Behavior of Viscous Gas Akitaka Matsumura (Osaka University) Taipei, October 29 - November 2, 2012 2012 International Conference on Nonlinear Analysis Evolutionary P.D.E. and Kinetic Theory

  2. (1) Introduction A model system of viscous gas  ρ t + ∇ · ( ρu ) = 0 ,     u t + u · ∇ u + 1 ρ ∆ u + µ + λ ρ ∇ p = µ  (1) ∇ ( ∇ · u ) , ρ    p = p ( ρ ) = aρ γ ,   where t ≥ 0 , x ∈ R n ( n = 1 , 2 , 3) , µ > 0 , µ + λ > 0 , a > 0 , γ ≥ 1. Consider the Cauchy problem for (1) with the initial data ( ρ, u )(0) = ( ρ 0 , u 0 ) . (2)

  3. (2) Two papers : • Nishida-M (1980) , J. Math. Kyoto Univ., asymptotic stability of constant states in R 3 , R 2 • Nishihara-M (1985) , Japan J. Appl. Math., asymptotic stability of traveling waves in R 1 Topic 1. (joint work with T. Maeda) x ∈ R 2 or R 3 , ¯ • Nishida-M (1980), ρ > 0 ρ, u 0 ) ∈ H 3 , small = ( ρ 0 − ¯ ⇒ (¯ ρ, 0) is asymptotically stable. Since then, Hoff (¯ ρ > 0), Feireisl, Lions (¯ ρ = 0), . . . , Z.Xin-J.Li-X.Huang (¯ ρ ≥ 0), . . .

  4. (3) Our present aim Consider the asymptotic stability of an unbounded state ¯ ρ u = U = ( x 1 ρ = P = 1 + t, 0) . 1 + t, Suppose x ∈ R 2 , p = aρ , and a − (2 µ + λ ) Theorem 1. > 0 . ¯ ρ Then, there exists a ε 0 > 0 such that if ∥ ρ 0 − ¯ ρ, u 0 − ( x 1 , 0) ∥ H 2 ≤ ε 0 , the Cauchy problem (1),(2) has a unique global solution in time ( ρ, u ) , satisfying ( ρ − P, u − U ) ∈ C ([0 , + ∞ ); H 2 ) and ¯ ρ 1 + t | ≤ C (1 + t ) − 3 sup | ρ ( t, x ) − 2 , x ∈ R 2 | u ( t, x ) − ( x 1 1 + t, 0) | ≤ C (1 + t ) − 1 sup 2 . x ∈ R 2

  5. (4) Remarks • The proof is given by a combination of changing the variable x 1 along a characteristic curve and using a time-weighted energy method . • For R 3 , the similar results hold in H 3 with the asymptotics x ∈ R 3 | ρ − P | ≤ C (1 + t ) − 2 , x ∈ R 3 | u − U | ≤ C (1 + t ) − 1 . sup sup • Open problems – Isentropic case : p = aρ γ , ( γ > 1) R – Full system case : p = Rρθ, e = γ − 1 θ ¯ θ = 2 µ + λ ρ u = U = ( x 1 ρ = P = 1 + t, 1 + t, 0) , . R ¯ ρ

  6. (5) Topic 2. (joint work with Yang Wang, MAA, 2010) Asymptotic stability of traveling wave solutions in R System in Lagrange coordinates :  v t − u x = 0 ,   u t + p x = ( µu x   v ) x ,   p = p ( v ) = av − γ .   Traveling wave solution (viscous shock wave): ( v, u ) = ( V, U )( x − st ) , ( V, U )( ±∞ ) = ( v ± , u ± ) It exists under the Rankine-Hugoniot and entropy conditions.

  7. (6) Known results ( µ : a positive constant) • Nishihara-M (1985) ∃ C ( v − , γ ) > 0 with C → ∞ as γ → 1 such that if | v + − v − | ≤ C ( v − , γ ) , then ( V, U )( x − st ) is asymptotically stable for small initial pertur- bations with integral zero, that is, ∫ ∫ ( v 0 − V )( x ) dx = ( u 0 − U )( x ) dx = 0 . – For γ = 1, any large viscous shock wave is OK!. – For γ > 1, a restriction on the amplitude is imposed.

  8. (7) • Mascia-Zumbrun(2004), Liu-Zeng(2009) | v + − v − | : suitably small = ⇒ asymptotic stability for general initial perturbations whose integrals are not necessarily zero. • Barker-Humpherys-Laffite-Rudd-Zumbrun (2008), Humpherys-Laffite-Zumbrun (2010) | v + − v − | : suitably large = ⇒ asymptotic stability They also carried out numerical studies which indicate the asymptotic stability for intermediate amplitude as well.

  9. (8) Our present aim Consider the case µ = µ ( v ) > 0. In the Chapman-Enskog expansion theory in rarefied gas dynamics (cf. Chapman-Cowling (1970)), the viscosity coefficient is given by a func- tion of the absolute temperature θ . Typical two examples : 1 { µ = ¯ Hard sphere Model , µ θ 2 , 1 2 2 + µ = ¯ Cut-off inverse power force Model , µ θ ( s − 1) , where s ( ≥ 5) and ¯ µ ( > 0) are some constants. The above two models are unified as ( β ≥ 1 µ θ β µ = ¯ 2) .

  10. (9) Since our model is isentropic, p = Rθ v = a v − γ , ( R : gas constant ) which implies θ = a Rv − ( γ − 1) . Hence, ( β ≥ 1 µ ( a µ = µ 0 v − ( γ − 1) β R ) β ) . 2 , µ 0 = ¯ Thus, we assume ( α ≥ 1 µ = µ ( v ) = µ 0 v − α ( A ) 2( γ − 1) , µ 0 > 0) .

  11. (10) Cauchy problem :  v t − u x = 0 ,   u t + p x = µ 0 ( u x  ( α ≥ 1  v α +1 ) x , 2 ( γ − 1)) (3)   p = p ( v ) = av − γ   with the initial and far field conditions  ( v, u )(0 , x ) = ( v 0 , u 0 )( x ) ,  (4) x →±∞ ( v, u )( t, x ) = ( v ± , u ± ) . lim 

  12. (11) Assumptions on initial data ( v 0 − V, u 0 − U ) ∈ H 1 ∩ L 1 , x ∈ R v 0 ( x ) > 0 , inf ∫ ∫ ( v 0 − V )( x ) dx = ( u 0 − U )( x ) dx = 0 . Setting ∫ x ∫ x φ 0 ( x ) = ( v 0 − V )( y ) dy, ψ 0 ( x ) = ( u 0 − U )( y ) dy, −∞ −∞ we further assume ( φ 0 , ψ 0 ) ∈ L 2 . ( ⇒ ( φ 0 , ψ 0 ) ∈ H 2 )

  13. (12) Suppose α ≥ 1 Theorem 2. 2 ( γ − 1) . Then, there exists a ε 0 > 0 such that if ∥ φ 0 , ψ 0 ∥ 2 ≤ ε 0 , the Cauchy problem (3),(4) has a unique global solution in time ( v, u ) , satisfying ( v − V, u − U ) ∈ C ([0 , ∞ ); H 1 ) and sup | ( v, u )( x, t ) − ( V, U )( x − st ) | → 0 ( t → ∞ ) . x ∈ R Remarks • In the proof, the essetial a priori estimate is given by a technical weighted energy method, “double step weighted energy method”, developed by Mei-M (1997) and Hashimoto-M (2007). • Open problem Full system case : ( β ≥ 1 µ θ β , λ = ¯ λ θ β , κ = ¯ κ θ β µ = ¯ 2) .

  14. (13) Sketch of the proof of Theorem 1 Write x = ( x, y ) ∈ R 2 and assume ¯ ρ = 1, µ + λ = 0 for simplicity. Cauchy problem :  ρ t + ( ρu 1 ) x + ( ρu 2 ) y = 0 ,    u 1 t + ( u 1 u 1 x + u 2 u 1 y ) + 1 ρp x − µ   ρ ( u 1 xx + u 1 yy ) = 0 ,    u 2 t + ( u 1 u 2 x + u 2 u 2 y ) + 1 ρp y − µ  ρ ( u 2 xx + u 2 yy ) = 0 ,       p = aρ  with the initial data ( x, y ) ∈ R 2 . ( ρ, u 1 , u 2 )(0 , x, y ) = ( ρ 0 , u 1 . 0 , u 2 . 0 )( x, y ) ,

  15. (14) Change the unknown variables : ( ρ, u 1 , u 2 ) → ( η, φ, ψ ) ρ = (1 + η ) x u 1 = 1 + t + φ, u 2 = ψ. 1 + t , System for ( η, φ, ψ ) : x  η t + 1 + tη x + ((1 + η ) φ ) x + ((1 + η ) ψ ) y = 0 ,       1 1 + ηη x − µ (1 + t ) x a    φ t + 1 + tφ x + 1 + tφ + φφ x + ψφ y + 1 + η ( φ xx + φ yy ) = 0 ,   1 + ηη y − µ (1 + t ) x a   ψ t + 1 + tψ x + φψ x + ψψ y + 1 + η ( ψ xx + ψ yy ) = 0 ,         ( η, φ, ψ )(0 , x, y ) = ( η 0 , φ 0 , ψ 0 )( x, y ) . 

  16. (15) Characteristic curve w.r.t. x  dx ( t ) = x ( t ) 1 + t,   dt = ⇒ x = x ( t ) = (1 + t )˜ x.  x (0) = ˜ x  Change of variable x : x = (1 + t )˜ x 1 ∂ ∂ ∂ x ∂ ⇒ ∂ ∂x = ⇒ x, ∂t + ∂x = 1 + t ∂ ˜ 1 + t ∂t  η ) ˜ η t + ((1 + ˜ φ ) ˜ x  η ) ˜ ˜ + ((1 + ˜ ψ ) y = 0 ,    1 + t ( ˜    ˜ φ ˜ ˜ )  ˜ φ φ ˜ a η ˜ µ φ ˜  x x x ˜ x ˜ 1 + t + ˜ ψ ˜ 1 + t + (1 + t ) ˜  φ t + 1 + t + φ y + η ) − = 0 , φ yy 1 + t (1 + ˜ 1 + ˜ η ( ˜   φ ˜ ˜ )  ψ ˜ a µ ψ ˜  x ˜ x x  ˜ 1 + t + ˜ ψ ˜ 1 + t + (1 + t ) ˜  ψ t + ψ y + η ˜ η y − = 0 . ψ yy   1 + ˜ 1 + ˜ η  

  17. (16) Reformulated problem :  1 η t + 1 + tφ x + ψ y = N 0 ,        1 1 a ( )   φ t + 1 + tφ + 1 + tη x − µ 1 + tφ xx + (1 + t ) φ yy = N 1 , (5)   1 ( )   ψ t + aη y − µ 1 + tψ xx + (1 + t ) ψ yy = N 2 ,       ( η, φ, ψ )(0) = ( η 0 , φ 0 , ψ 0 ) ∈ H 2 .    We look for the global solution in time of (5) such that ( x,y ) ∈ R 2 | ( η, φ, ψ )( t, x, y ) | ≤ C (1 + t ) − 1 ( η, φ, ψ ) ∈ C ([0 , ∞ ); H 2 ) , sup 2 .

  18. (17) Proposition 3 ( a priori estimate). Suppose a − µ > 0 . Then there exist positive constants ε 0 and C 0 such that if ( η, φ, ψ ) ∈ C ([0 , T ]; H 2 ) is the solution of the Cauchy problem (5) for some T > 0 and sup ∥ ( η, φ, ψ )( t ) ∥ 2 ≤ ε 0 , t ∈ [0 ,T ] it holds that for t ∈ [0 , T ] ∥ ( η, φ, ψ )( t ) ∥ 2 2 + (1 + t ) 2 ∥ ( η, φ, ψ ) y ( t ) ∥ 2 1 + (1 + t ) 4 ∥ ( η, φ, ψ ) yy ( t ) ∥ 2 ∫ t 1 1 ( ) 1 + τ ∥ φ ( τ ) ∥ 2 + 1 + τ ∥ ( φ, ψ ) x ( τ ) ∥ 2 2 + (1 + τ ) ∥ ( φ, ψ ) y ( τ ) ∥ 2 + dτ 2 0 ∫ t (1 + τ ) 3 ∥ ( φ, ψ ) yy ( τ ) ∥ 2 1 + (1 + τ ) 5 ∥ ( φ, ψ ) yyy ( τ ) ∥ 2 ) ( ) + dτ 0 ∫ t 1 ( ) 1 + τ ∥ η x ( τ ) ∥ 2 1 + (1 + τ ) ∥ η y ( t ) ∥ 2 1 + (1 + τ ) 3 ∥ η yy ( τ ) ∥ 2 + dτ 0 ≤ C 0 ∥ ( η 0 , φ 0 , ψ 0 ) ∥ 2 2

  19. (18) Decay estimates ∫∫ ( x,y ) ∈ R 2 | η ( t, x, y ) | 2 ≤ sup | (2 ηη x ) y | dxdy ≤ C ( ∥ η x ∥∥ η y ∥ + ∥ η ∥∥ η xy ∥ ) ≤ C (1 + t ) − 1 which implies 1 1 + t | ≤ C (1 + t ) − 3 ( x,y ) ∈ R 2 | ρ ( t, x, y ) − sup 2 , and similarly x 1 + t, 0) | ≤ C (1 + t ) − 1 ( x,y ) ∈ R 2 | u ( t, x, y ) − ( sup 2 .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend