sdes in large dimension and numerical methods part 1
play

SDEs in large dimension and numerical methods Part 1: Sampling the - PowerPoint PPT Presentation

Introduction Free energy Thermodynamic integration Adaptive biasing techniques SDEs in large dimension and numerical methods Part 1: Sampling the canonical distribution T. Lelivre CERMICS - Ecole des Ponts ParisTech & Matherials


  1. Introduction Free energy Thermodynamic integration Adaptive biasing techniques SDEs in large dimension and numerical methods Part 1: Sampling the canonical distribution T. Lelièvre CERMICS - Ecole des Ponts ParisTech & Matherials project-team - INRIA RICAM Winterschool, December 2016

  2. Introduction Free energy Thermodynamic integration Adaptive biasing techniques Motivation The aim of molecular dynamics simulations is to understand the relationships between the macroscopic properties of a molecular system and its atomistic features. In particular, one would like to evaluate numerically macroscopic quantities from models at the microscopic scale. Many applications in various fields: biology, physics, chemistry, materials science. Various models: discrete state space (kinetic Monte Carlo, Markov State Model) or continuous state space (Langevin). The basic ingredient: a potential V which associates to a configuration ( x 1 , ..., x N ) = x ∈ R 3 N atom an energy V ( x 1 , ..., x N atom ) . The dimension d = 3 N atom is large (a few hundred thousand to millions).

  3. Introduction Free energy Thermodynamic integration Adaptive biasing techniques Empirical force field Typically, V is a sum of potentials modelling interaction between two particles, three particles and four particles: � � � V = V 1 ( x i , x j ) + V 2 ( x i , x j , x k ) + V 3 ( x i , x j , x k , x l ) . i < j i < j < k i < j < k < l 5 ǫ = 1 , σ = 1 For example, 4 V 1 ( x i , x j ) = V LJ ( | x i − x j | ) 3 V LJ ( r ) where 2 � 12 − � σ �� σ � 6 � V LJ ( r ) = 4 ǫ is 1 r r the Lennard-Jones potential. 0 -1 0.6 0.8 1 1.2 1.4 1.6 1.8 2 r

  4. Introduction Free energy Thermodynamic integration Adaptive biasing techniques Dynamics Newton equations of motion: � d X t = M − 1 P t dt d P t = −∇ V ( X t ) dt

  5. Introduction Free energy Thermodynamic integration Adaptive biasing techniques Dynamics Newton equations of motion + thermostat: Langevin dynamics: � d X t = M − 1 P t dt d P t = −∇ V ( X t ) dt − γ M − 1 P t dt + � 2 γβ − 1 d W t where γ > 0. Langevin dynamics is ergodic wrt � � − β p t M − 1 p µ ( d x ) ⊗ Z − 1 exp d p with p 2 d µ = Z − 1 exp ( − β V ( x )) d x � where Z = exp ( − β V ( x )) d x is the partition function and β = ( k B T ) − 1 is proportional to the inverse of the temperature.

  6. Introduction Free energy Thermodynamic integration Adaptive biasing techniques Dynamics Newton equations of motion + thermostat: Langevin dynamics: � d X t = M − 1 P t dt d P t = −∇ V ( X t ) dt − γ M − 1 P t dt + � 2 γβ − 1 d W t where γ > 0. Langevin dynamics is ergodic wrt � � − β p t M − 1 p µ ( d x ) ⊗ Z − 1 exp d p with p 2 d µ = Z − 1 exp ( − β V ( x )) d x � where Z = exp ( − β V ( x )) d x is the partition function and β = ( k B T ) − 1 is proportional to the inverse of the temperature. In the following, we focus on the overdamped Langevin (or gradient) dynamics � 2 β − 1 d W t , d X t = −∇ V ( X t ) dt + which is also ergodic wrt µ .

  7. Introduction Free energy Thermodynamic integration Adaptive biasing techniques Macroscopic quantities of interest These dynamics are used to compute macroscopic quantities: (i) Thermodynamic quantities (averages wrt µ of some observables): stress, heat capacity, free energy,... � T � R d ϕ ( x ) µ ( d x ) ≃ 1 E µ ( ϕ ( X )) = ϕ ( X t ) dt . T 0 (ii) Dynamical quantities (averages over trajectories): diffusion coefficients, viscosity, transition rates,... M E ( F (( X t ) t ≥ 0 )) ≃ 1 � F (( X m t ) t ≥ 0 ) . M m = 1 Difficulties: (i) high-dimensional problem ( N ≫ 1); (ii) X t is a metastable process and µ is a multimodal measure.

  8. Introduction Free energy Thermodynamic integration Adaptive biasing techniques Metastability: energetic and entropic barriers A two-dimensional schematic picture 2 2.0 1.5 1.5 1 1.0 0.5 0.5 0 0.0 x y -0.5 -0.5 -1 -1.0 -1.5 -1.5 -2 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 0 2000 4000 6000 8000 10000 x Iterations 3 3 2 2 1 1 0 0 x y -1 -1 -2 -2 -3 -3 -6 -4 -2 0 2 4 6 0 2000 4000 6000 8000 10000 x Iterations − → • Slow convergence of trajectorial averages • Transitions between metastable states are rare events

  9. Introduction Free energy Thermodynamic integration Adaptive biasing techniques A toy model for solvation Influence of the solvation on a dimer conformation [Dellago, Geissler] . ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ���� ���� ��� ��� ��� ��� ���� ���� ���� ���� ���� ���� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ��� ��� ���� ���� ��� ��� ���� ���� ���� ���� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ��� ��� ���� ���� ��� ��� ���� ���� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ���� ���� ��� ��� ���� ���� ���� ���� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ���� ���� ���� ���� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� ���� ���� ���� ���� ��� ��� ���� ���� ���� ���� ��� ��� ���� ���� ���� ���� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ���� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ���� ���� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ���� ���� ���� ���� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� Compact state. Stretched state. The particles interact through a pair potential: truncated LJ for all particles except the two monomers (black particles) which interact through a double-well potential. A slow variable is the distance between the two monomers.

  10. Introduction Free energy Thermodynamic integration Adaptive biasing techniques A toy example in material sciences The 7 atoms Lennard Jones cluster in 2D. (a) C 0 , V = − 12 . 53 (b) C 1 , V = − 11 . 50 (c) C 2 , V = − 11 . 48 (d) C 3 , V = − 11 . 40 Figure: Low energy conformations of the Lennard-Jones cluster. − → simulation

  11. Introduction Free energy Thermodynamic integration Adaptive biasing techniques Simulations of biological systems Unbinding of a ligand from a protein (Diaminopyridine-HSP90, Courtesy of SANOFI) Elementary time-step for the molecular dynamics = 10 − 15 s Dissociation time = 0 . 5 s Challenge: bridge the gap between timescales

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend