a second order discretization and efficient simulation
play

A second order discretization and efficient simulation for Backward - PowerPoint PPT Presentation

Synopsis Forward-Backward SDEs Discretization Simulation A numerical example Cubature +recombination Another numerical example A second order discretization and efficient simulation for Backward SDEs Konstantinos Manolarakis Imperial


  1. Synopsis Forward-Backward SDEs Discretization Simulation A numerical example Cubature +recombination Another numerical example A second order discretization and efficient simulation for Backward SDEs Konstantinos Manolarakis Imperial College London joint with Dan Crisan New advances in Backward SDEs for financial engineering applications October 2010, Tamerza K Manolarakis Second order algorithm for BSDEs

  2. Synopsis Forward-Backward SDEs Discretization Simulation A numerical example Cubature +recombination Another numerical example Forward Backward SDEs and related PDEs. Second order discretization. Simulation with the cubature method Numerical examples. K Manolarakis Second order algorithm for BSDEs

  3. Synopsis Forward-Backward SDEs Discretization Simulation A numerical example Cubature +recombination Another numerical example ( W t , F t ) 0 ≤ t ≤ T a d -dimensional BM on (Ω , F , P ) . Let ( X , Y , Z ) = { ( X t , Y t , Z t ) 0 ≤ t ≤ T } ∈ R d × R × R d be the solution of the (decoupled) system: � t � t d � V i ( X s ) ◦ dW i X t = x + V 0 ( X s ) ds + s , 0 0 i = 1 (1) � T � T f ( X s , Y s , Z s ) ds − Z s · dW s , Y t = Φ( X T ) + t t - V i : R d → R d smooth vector fields. - Φ( X T ) called the final condition - f : R d × R × R d → R Lipschitz, called ”the driver”. K Manolarakis Second order algorithm for BSDEs

  4. Synopsis Forward-Backward SDEs Discretization Simulation A numerical example Cubature +recombination Another numerical example Let u ∈ C 1 , 2 ([ 0 , T ) × R d ) be the solution of the final value Cauchy problem L 0 + L � � t ∈ [ 0 , T ) , x ∈ R d � u = − f ( t , x , u , ( ∇ uV ) ( x )) , , (2) x ∈ R d u ( T , x ) = Φ( x ) , where L i � 2 . � d L is the second order differential operator L = 1 � 2 i = 1 L i , i = 0 , 1 ..., d , are the first order differential operators associated to V i = ( V j i ) d j = 1 . d d L i = L 0 = ∂ t + � V j � V j i ∂ x i , 0 ∂ x j j = 1 j = 1 V is the matrix V = ( V 1 , ..., V d ) . K Manolarakis Second order algorithm for BSDEs

  5. Synopsis Forward-Backward SDEs Discretization Simulation A numerical example Cubature +recombination Another numerical example Theorem (Peng 1991,1992, Pardoux & Peng 1992) The (viscosity or classical ) solution of (2) admits the following Feynman-Kac representation � T � � u ( t , x ) = Y t , x Φ( X t , x f ( s , X t , x s , Y t , x s , Z t , x = E T ) + s ) ds , (3) t t where ( X t , x , Y t , x , Z t , x ) is the ‘stochastic flow’ associated to (1) d dX t , x = V 0 ( X t , x � V i ( X t , x s ) ◦ dW i s ∈ [ t , T ] , s ) ds + s , s i = 1 (4) dY t , x = − f ( X t , x s , Y t , x s , Z t , x s ) ds + Z t , x · dW s . s s X t , x Y t , x = Φ( X t , x = x , T ) t T b ( R d ) then Z t , x = ∇ u ( s , X t , x s ) V ( X t , x If in addition u ∈ C 1 s ) . s K Manolarakis Second order algorithm for BSDEs

  6. Synopsis Forward-Backward SDEs Discretization Simulation A numerical example Cubature +recombination Another numerical example Notation: We fix a a partition π := { 0 = t 0 < t 1 < . . . < t n } . A is the set of multi indices A := ∪ j { 0 , 1 , . . . , d } j . Norm on multi indices | α | = length of α, � α � := | α | + card { j : α j = 0 , 1 ≤ j ≤ | α |} . For α = ( α 1 , . . . , α k ) ∈ A , we denote by L α u := L α 1 . . . L α k u and the iterated Stratonovich integral for appropriate g : [ 0 , T ] × R d → R :  g ( s , X s ) | β | = 0  � s  J β [ g ( · , X · )] t , s := t J β − [ g ( · , X · )] t , u du l ≥ 1 , j l = 0 � s  t J β − [ g ( · , X · )] t , u ◦ dW j l ( u ) l ≥ 1 , j l � = 0 .  K Manolarakis Second order algorithm for BSDEs

  7. Synopsis Forward-Backward SDEs Discretization Simulation A numerical example Cubature +recombination Another numerical example We can develop the Stratonovich-Taylor expansion for appropriate g : [ 0 , T ] × R d → R : : g ( t , X 0 , x � L α g ( 0 , x ) J α [ 1 ] 0 , t + � J α [ L α g ( · , X · )] 0 , t ) = t � α �≤ m � α � = m + 1 , m + 2 = Tayl ( g , t ) + R m ( t , g ) (5) R m ( t , g ) is called the remainder. E [ | R m ( t , g ) | ] = O ( t ( m + 1 ) / 2 ) , t < 1 K Manolarakis Second order algorithm for BSDEs

  8. Synopsis Forward-Backward SDEs Discretization Simulation A numerical example Cubature +recombination Another numerical example First revisit the Bouchard-Touzi-Zhang discretization (Euler style). Assume that we “know” { X } n i = 0 : Y π, 1 Z π, 1 := Φ( X n ) , = 0 t n t n 1 � � Z π, 1 Y π, 1 := E i t i + 1 ∆ W i + 1 t i δ i + 1 � � � � Y π, 1 Y π, 1 X i , Y π, 1 , Z π, 1 := E i + δ i + 1 f , i = n − 1 , . . . , 0 . t i t i + 1 t i t i where δ i + 1 = t i + 1 − t i , ∆ W i + 1 = W t i + 1 − W t i . K Manolarakis Second order algorithm for BSDEs

  9. Synopsis Forward-Backward SDEs Discretization Simulation A numerical example Cubature +recombination Another numerical example Theorem (Bouchard and Touzi(2004), Zhang(2004), Gobet and Labart(2007)) When coefficients of the FBSDE are smooth � � 2 2 � � � � � Y t i − Y π, 1 � Z t i − Z π, 1 = O ( � π � 2 ) 0 ≤ i ≤ n − 1 E max + δ i + 1 � � � � t i t i � � whereas, if these are Lipschitz continuous � � 2 2 � � � � � Y t i − Y π, 1 � Z t i − Z π, 1 max + δ i + 1 = O ( � π � ) 0 ≤ i ≤ n − 1 E � � � � t i t i � � K Manolarakis Second order algorithm for BSDEs

  10. Synopsis Forward-Backward SDEs Discretization Simulation A numerical example Cubature +recombination Another numerical example Towards the second order scheme: For the driver, we use the Trapezoid rule rather than Euler. Assume that we also “know” Z i = ∇ u ( t i , X t i ) V ( X t i ) : + δ i + 1 � � � � � � Y π, 2 Y π, 2 f ( X t i , Y π, 2 f ( X t i + 1 , Y π, 2 := E i , Z t i ) + E i t i + 1 , Z t i + 1 ) t i t i + 1 t i 2 With standard arguments using the Stratonovich Taylor expansions, we can show : � � � Y t i − Y π, 2 � � t i � � t i + 1 f (Θ s ) ds − δ i + 1 � � ��� � � � Y t i + 1 − Y π, 2 f (Θ π, 2 f (Θ π, 2 = t i + 1 + ) + E i t i + 1 ) � E i � � t i 2 � t i � � � � Y t i + 1 − Y π, 2 � + δ 3 � α �≤ 4 � L α u ( t i + 1 , · ) � ∞ ≤ ( 1 + C δ i + 1 ) � E i i + 1 max � � t i + 1 where Θ t = ( X t , Y t , Z t ) , Θ π, 2 := ( X t i , Y π, 2 , Z π, 2 ) . t i t i t i K Manolarakis Second order algorithm for BSDEs

  11. Synopsis Forward-Backward SDEs Discretization Simulation A numerical example Cubature +recombination Another numerical example Higher order for Z : We fix l = 1 , . . . , d and look at the BTZ approximation using the Taylor expansion: K Manolarakis Second order algorithm for BSDEs

  12. Synopsis Forward-Backward SDEs Discretization Simulation A numerical example Cubature +recombination Another numerical example Higher order for Z : We fix l = 1 , . . . , d and look at the BTZ approximation using the Taylor expansion: 1 1 � � � � Y t i + 1 ∆ W l u ( t i + 1 , X t i + 1 )∆ W l E i = E i i + 1 i + 1 δ i + 1 δ i + 1   1 1 � �  ∆ W l � L α u ( t i , X t i ) J α [ 1 ] t i , t i + 1  + R 4 ( u , δ i + 1 )∆ W l = E i E i i + 1 i + 1 δ i + 1 δ i + 1 � α �≤ 4 K Manolarakis Second order algorithm for BSDEs

  13. Synopsis Forward-Backward SDEs Discretization Simulation A numerical example Cubature +recombination Another numerical example Higher order for Z : We fix l = 1 , . . . , d and look at the BTZ approximation using the Taylor expansion: 1 1 � � � � Y t i + 1 ∆ W l u ( t i + 1 , X t i + 1 )∆ W l E i = E i i + 1 i + 1 δ i + 1 δ i + 1   1 1 � �  ∆ W l � L α u ( t i , X t i ) J α [ 1 ] t i , t i + 1  + R 4 ( u , δ i + 1 )∆ W l = E i E i i + 1 i + 1 δ i + 1 δ i + 1 � α �≤ 4 t i + 1 � � = Z l � L α u ( t i , X t i ) E i ∆ W l i + 1 J α [ 1 ] t i , t i + 1 + δ 2 � α � = 5 , 6 � L α u ( t i + 1 , · ) � ∞ i + 1 max δ i + 1 � α � = 3 (6) K Manolarakis Second order algorithm for BSDEs

  14. Synopsis Forward-Backward SDEs Discretization Simulation A numerical example Cubature +recombination Another numerical example Higher order for Z : We fix l = 1 , . . . , d and look at the BTZ approximation using the Taylor expansion: 1 1 � � � � Y t i + 1 ∆ W l u ( t i + 1 , X t i + 1 )∆ W l E i = E i i + 1 i + 1 δ i + 1 δ i + 1   1 1 � �  ∆ W l � L α u ( t i , X t i ) J α [ 1 ] t i , t i + 1  + R 4 ( u , δ i + 1 )∆ W l = E i E i i + 1 i + 1 δ i + 1 δ i + 1 � α �≤ 4 t i + 1 � � = Z l � L α u ( t i , X t i ) E i ∆ W l i + 1 J α [ 1 ] t i , t i + 1 + δ 2 � α � = 5 , 6 � L α u ( t i + 1 , · ) � ∞ i + 1 max δ i + 1 � α � = 3 (6) Since k � J α [ 1 ] t i , t i + 1 J ( l ) [ 1 ] t i , t i + 1 = J ( α 1 ,...,α j − 1 , l ,α j ,...,α k ) [ 1 ] t i , t i + 1 j = 1 J α [ 1 ] t i , t i + 1 � � E i = 0 , if � α � = 1 + 2 N + K Manolarakis Second order algorithm for BSDEs

  15. Synopsis Forward-Backward SDEs Discretization Simulation A numerical example Cubature +recombination Another numerical example Which multi indices α , with � α � = 3, satisfy � � ∆ W l i + 1 J α [ 1 ] t i , t i + 1 E i � = 0 K Manolarakis Second order algorithm for BSDEs

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend