constrained nonlinear optimization
play

Constrained Nonlinear Optimization Moritz Diehl & S ebastien - PowerPoint PPT Presentation

Constrained Nonlinear Optimization Moritz Diehl & S ebastien Gros S. Gros, M. Diehl 1 / 12 Outline KKT conditions 1 Some intuitions on the KKT conditions 2 Second Order Sufficient Conditions (SOSC) 3 S. Gros, M. Diehl 2 / 12


  1. Constrained Nonlinear Optimization Moritz Diehl & S´ ebastien Gros S. Gros, M. Diehl 1 / 12

  2. Outline KKT conditions 1 Some intuitions on the KKT conditions 2 Second Order Sufficient Conditions (SOSC) 3 S. Gros, M. Diehl 2 / 12

  3. Outline KKT conditions 1 Some intuitions on the KKT conditions 2 Second Order Sufficient Conditions (SOSC) 3 S. Gros, M. Diehl 3 / 12

  4. Algebraic Characterization of Unconstrained Local Optima Consider the unconstrained problem: min w Φ ( w ) 1st-Order Necessary Condition of Optimality (FONC) w ∗ local optimum ∇ Φ( w ∗ ) = 0 , w ∗ stationary point ⇒ 2nd-Order Sufficient Conditions of Optimality (SOSC) NLP: x ∗ strict local minimum ∇ Φ( w ∗ ) = 0 and ∇ 2 Φ( w ∗ ) ≻ 0 ⇒ x ∗ strict local maximum ∇ Φ( w ∗ ) = 0 and ∇ 2 Φ( w ∗ ) ≺ 0 ⇒ No conclusion can be drawn in the case ∇ 2 Φ( w ∗ ) is indefinite! S. Gros, M. Diehl 4 / 12

  5. Algebraic Characterization of Unconstrained Local Optima Consider the unconstrained problem: min w Φ ( w ) 1st-Order Necessary Condition of Optimality (FONC) w ∗ local optimum ∇ Φ( w ∗ ) = 0 , w ∗ stationary point ⇒ 2nd-Order Sufficient Conditions of Optimality (SOSC) NLP: x ∗ strict local minimum ∇ Φ( w ∗ ) = 0 and ∇ 2 Φ( w ∗ ) ≻ 0 ⇒ x ∗ strict local maximum ∇ Φ( w ∗ ) = 0 and ∇ 2 Φ( w ∗ ) ≺ 0 ⇒ No conclusion can be drawn in the case ∇ 2 Φ( w ∗ ) is indefinite! S. Gros, M. Diehl 4 / 12

  6. Algebraic Characterization of Unconstrained Local Optima Consider the unconstrained problem: min w Φ ( w ) 1st-Order Necessary Condition of Optimality (FONC) w ∗ local optimum ∇ Φ( w ∗ ) = 0 , w ∗ stationary point ⇒ 2nd-Order Sufficient Conditions of Optimality (SOSC) NLP: x ∗ strict local minimum ∇ Φ( w ∗ ) = 0 and ∇ 2 Φ( w ∗ ) ≻ 0 ⇒ x ∗ strict local maximum ∇ Φ( w ∗ ) = 0 and ∇ 2 Φ( w ∗ ) ≺ 0 ⇒ No conclusion can be drawn in the case ∇ 2 Φ( w ∗ ) is indefinite! Note: ∇ Φ( w ∗ ) = 0 then ∄ d such that ∇ Φ( w ∗ ) T d < 0 ∇ 2 Φ ≻ 0 then ∀ d � = 0, d T ∇ 2 Φ( w ∗ ) d > 0 S. Gros, M. Diehl 4 / 12

  7. Algebraic Characterization of Unconstrained Local Optima Consider the unconstrained problem: min w Φ ( w ) 1st-Order Necessary Condition of Optimality (FONC) w ∗ local optimum ∇ Φ( w ∗ ) = 0 , w ∗ stationary point ⇒ 2nd-Order Sufficient Conditions of Optimality (SOSC) NLP: x ∗ strict local minimum ∇ Φ( w ∗ ) = 0 and ∇ 2 Φ( w ∗ ) ≻ 0 ⇒ x ∗ strict local maximum ∇ Φ( w ∗ ) = 0 and ∇ 2 Φ( w ∗ ) ≺ 0 ⇒ No conclusion can be drawn in the case ∇ 2 Φ( w ∗ ) is indefinite! Note: ∇ Φ( w ∗ ) = 0 then ∄ d such that ∇ Φ( w ∗ ) T d < 0 ∇ 2 Φ ≻ 0 then ∀ d � = 0, d T ∇ 2 Φ( w ∗ ) d > 0 Local optimum: ”No direction d can improve the cost (locally)” S. Gros, M. Diehl 4 / 12

  8. FONC for equality constraints Consider the NLP problem: min Φ ( w ) w s.t. g ( w ) = 0 S. Gros, M. Diehl 5 / 12

  9. FONC for equality constraints Consider the NLP problem: min Φ ( w ) w s.t. g ( w ) = 0 Definition: a point w satisfies LICQ a iff ∇ g ( w ) is full column rank a Linear Independence Constraint Qualification S. Gros, M. Diehl 5 / 12

  10. FONC for equality constraints Consider the NLP problem: min Φ ( w ) w s.t. g ( w ) = 0 Definition: a point w satisfies LICQ a iff ∇ g ( w ) is full column rank a Linear Independence Constraint Qualification First-order Necessary Conditions Let Φ , g in C 1 . If w ∗ is a (local) optimum, and w ∗ satisfies LICQ, then there is a unique vector λ such that: ∇ Φ( w ∗ ) + ∇ g ( w ∗ ) λ Dual feasibility: = 0 g ( w ∗ ) Primal feasibility: = 0 S. Gros, M. Diehl 5 / 12

  11. FONC for equality constraints Consider the NLP problem: Square system: ( n + m ) conditions in min Φ ( w ) ( n + m ) variables ( w , λ ) w s.t. g ( w ) = 0 Lagrange multipliers: λ i ↔ g i Dual feasibility ≡ Lagrangian stationarity: ∇L ( w ∗ , λ ∗ ) = 0 Definition: a point w satisfies LICQ a iff ∇ g ( w ) is full column rank ∆ = Φ( w ) + λ T g ( w ) is the where L ( w , λ ) Lagrangian a Linear Independence Constraint Qualification First-order Necessary Conditions Let Φ , g in C 1 . If w ∗ is a (local) optimum, and w ∗ satisfies LICQ, then there is a unique vector λ such that: ∇ Φ( w ∗ ) + ∇ g ( w ∗ ) λ Dual feasibility: = 0 g ( w ∗ ) Primal feasibility: = 0 S. Gros, M. Diehl 5 / 12

  12. KKT point Consider the NLP problem: min Φ ( w ) w s.t. g ( w ) = 0 h ( w ) ≤ 0 S. Gros, M. Diehl 6 / 12

  13. KKT point Consider the NLP problem: min Φ ( w ) w s.t. g ( w ) = 0 h ( w ) ≤ 0 A point ( w ∗ , µ ∗ , λ ∗ ) is called a KKT point if it satisfies: where L = Φ ( w ) + λ T g ( w ) + µ T h ( w ) S. Gros, M. Diehl 6 / 12

  14. KKT point Consider the NLP problem: min Φ ( w ) w s.t. g ( w ) = 0 h ( w ) ≤ 0 A point ( w ∗ , µ ∗ , λ ∗ ) is called a KKT point if it satisfies: ∇ w L ( w ∗ , µ ∗ , λ ∗ ) = 0 , µ ∗ ≥ 0 , Dual Feasibility: where L = Φ ( w ) + λ T g ( w ) + µ T h ( w ) S. Gros, M. Diehl 6 / 12

  15. KKT point Consider the NLP problem: min Φ ( w ) w s.t. g ( w ) = 0 h ( w ) ≤ 0 A point ( w ∗ , µ ∗ , λ ∗ ) is called a KKT point if it satisfies: ∇ w L ( w ∗ , µ ∗ , λ ∗ ) = 0 , µ ∗ ≥ 0 , Dual Feasibility: g ( w ∗ ) = 0 , h ( w ∗ ) ≤ 0 , Primal Feasibility: where L = Φ ( w ) + λ T g ( w ) + µ T h ( w ) S. Gros, M. Diehl 6 / 12

  16. KKT point Consider the NLP problem: min Φ ( w ) w s.t. g ( w ) = 0 h ( w ) ≤ 0 A point ( w ∗ , µ ∗ , λ ∗ ) is called a KKT point if it satisfies: ∇ w L ( w ∗ , µ ∗ , λ ∗ ) = 0 , µ ∗ ≥ 0 , Dual Feasibility: g ( w ∗ ) = 0 , h ( w ∗ ) ≤ 0 , Primal Feasibility: µ ∗ i h i ( w ∗ ) = 0 , Complementary Slackness: ∀ i where L = Φ ( w ) + λ T g ( w ) + µ T h ( w ) S. Gros, M. Diehl 6 / 12

  17. First-Order Necessary Conditions (FONC) min Φ ( w ) w s.t. g ( w ) = 0 h ( w ) ≤ 0 First-Order Necessary Conditions Let Φ , g , h be C 1 . If w ∗ is a (local) optimum and satisfies LICQ, then there is a unique vector λ ∗ and µ ∗ such that ( w ∗ , λ ∗ , ν ∗ ) is a KKT point. S. Gros, M. Diehl 7 / 12

  18. First-Order Necessary Conditions (FONC) min Φ ( w ) w s.t. g ( w ) = 0 h ( w ) ≤ 0 First-Order Necessary Conditions Let Φ , g , h be C 1 . If w ∗ is a (local) optimum and satisfies LICQ, then there is a unique vector λ ∗ and µ ∗ such that ( w ∗ , λ ∗ , ν ∗ ) is a KKT point. Active constraints: h i ( w ) < 0 then µ ∗ i = 0, and h i is inactive µ ∗ i > 0 and h i ( w ) = 0 then h i ( w ) is strictly active µ ∗ i = 0 and h i ( w ) = 0 then then h i ( w ) is weakly active We define the active set A ∗ as the set of indices i of the active constraints S. Gros, M. Diehl 7 / 12

  19. First-Order Necessary Conditions (FONC) Definition: a point w satisfies LICQ iff min Φ ( w ) w ∇ h A ∗ ( w )] [ ∇ g ( w ) , s.t. g ( w ) = 0 h ( w ) ≤ 0 is full column rank First-Order Necessary Conditions Let Φ , g , h be C 1 . If w ∗ is a (local) optimum and satisfies LICQ, then there is a unique vector λ ∗ and µ ∗ such that ( w ∗ , λ ∗ , ν ∗ ) is a KKT point. Active constraints: h i ( w ) < 0 then µ ∗ i = 0, and h i is inactive µ ∗ i > 0 and h i ( w ) = 0 then h i ( w ) is strictly active µ ∗ i = 0 and h i ( w ) = 0 then then h i ( w ) is weakly active We define the active set A ∗ as the set of indices i of the active constraints S. Gros, M. Diehl 7 / 12

  20. Outline KKT conditions 1 Some intuitions on the KKT conditions 2 Second Order Sufficient Conditions (SOSC) 3 S. Gros, M. Diehl 8 / 12

  21. Some intuitions on the KKT conditions min Φ( x ) w s.t. h ( w ) ≤ 0 Ball rolling down a valley blocked by a fence S. Gros, M. Diehl 9 / 12

  22. Some intuitions on the KKT conditions min Φ( x ) w s.t. h ( w ) ≤ 0 Ball rolling down a valley blocked by a fence w 2 w 1 S. Gros, M. Diehl 9 / 12

  23. Some intuitions on the KKT conditions min Φ( x ) w s.t. h ( w ) ≤ 0 h ( w ) ≤ 0 Ball rolling down a valley blocked by a fence w 2 w 1 S. Gros, M. Diehl 9 / 12

  24. Some intuitions on the KKT conditions min Φ( x ) w s.t. h ( w ) ≤ 0 h ( w ) ≤ 0 Ball rolling down a valley blocked by a fence w 2 w 1 S. Gros, M. Diehl 9 / 12

  25. Some intuitions on the KKT conditions min Φ( x ) w s.t. h ( w ) ≤ 0 h ( w ) ≤ 0 Ball rolling down a valley blocked by a fence −∇ Φ is the gravity w 2 −∇ Φ ( w ) w 1 S. Gros, M. Diehl 9 / 12

  26. Some intuitions on the KKT conditions min Φ( x ) w s.t. h ( w ) ≤ 0 − µ ∇ h ( w ) h ( w ) ≤ 0 Ball rolling down a valley blocked by a fence −∇ Φ is the gravity w 2 − µ ∇ h is the force of the fence. Sign −∇ Φ ( w ) µ ≥ 0 means the fence can only ”push” the ball. µ = 0 . 77376 w 1 S. Gros, M. Diehl 9 / 12

  27. Some intuitions on the KKT conditions min Φ( x ) w s.t. h ( w ) ≤ 0 − µ ∇ h ( w ) h ( w ) ≤ 0 Ball rolling down a valley blocked by a fence −∇ Φ is the gravity w 2 − µ ∇ h is the force of the fence. Sign −∇ Φ ( w ) µ ≥ 0 means the fence can only ”push” the ball. µ = 0 . 77376 w 1 Balance of the forces: ∇L = ∇ Φ ( w ) + µ ∇ h ( w ) = 0 S. Gros, M. Diehl 9 / 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend