application of cadp to hardware validation
play

Application of CADP to Hardware Validation Abderahman KRIOUILE and - PowerPoint PPT Presentation

Application of CADP to Hardware Validation Abderahman KRIOUILE and Massimo ZENDRI STMicroelectronics Forum Mthodes Formelles "Le Model-Checking en action" Toulouse, France, Oct 2014 Agenda 2 20 years of Hardware Validation


  1. Application of CADP to Hardware Validation Abderahman KRIOUILE and Massimo ZENDRI STMicroelectronics Forum Méthodes Formelles "Le Model-Checking en action" Toulouse, France, Oct 2014

  2. Agenda 2 • 20 years of Hardware Validation with CADP • Presentation of hardware case studies • Four Types of Studies • Formal Modeling • Functional Verification • Model-based Testing • Performance Evaluation • Conclusion Application of CADP to Hardware Validation 15/10/2014

  3. 20 Years of Hardware Validation with CADP 3 1995 2000 2005 2010 2015 Application of CADP to Hardware Validation 15/10/2014

  4. 20 Years of Hardware Validation with CADP 4 High-level NovaScale/FAME Supercomputers FAME2 Polykid SCSI-2 Multiprocessor xSTream AMBA ACE SoC CC-NUMA Powerscale Platform2012 Blitter Display On-Chip level STBus SoC Utah NoC 2D Mesh NoC DES Asynchronous logic FAUST/MAGALI Low-level 1995 2000 2005 2010 2015 Application of CADP to Hardware Validation 15/10/2014

  5. 20 Years of Hardware Validation with CADP 5 High-level NovaScale/FAME Powerscale Supercomputers FAME2 Polykid • multiprocessor architecture SCSI-2 based on PowerPC microprocessors Multiprocessor xSTream AMBA ACE SoC CC-NUMA used in Bull’s Escala Powerscale Platform2012 servers and Blitter Display On-Chip level workstations STBus SoC Utah NoC 2D Mesh NoC DES Asynchronous logic FAUST/MAGALI Low-level 1995 2000 2005 2010 2015 Application of CADP to Hardware Validation 15/10/2014

  6. 20 Years of Hardware Validation with CADP 6 High-level NovaScale/FAME Polykid Supercomputers FAME2 Polykid • multiprocessor architecture SCSI-2 based on PowerPC • CC-NUMA memory model Multiprocessor xSTream AMBA ACE SoC CC-NUMA • 2 cache coherency levels Powerscale Platform2012 Blitter Display On-Chip level STBus SoC Utah NoC 2D Mesh NoC DES Asynchronous logic FAUST/MAGALI Low-level 1995 2000 2005 2010 2015 Application of CADP to Hardware Validation 15/10/2014

  7. 20 Years of Hardware Validation with CADP 7 High-level NovaScale/FAME SCSI-2 Supercomputers FAME2 Polykid • SCSI-2 bus arbitration SCSI-2 protocol • bus grant based on fixed Multiprocessor xSTream AMBA ACE SoC CC-NUMA priorities (SCSI numbers) Powerscale Platform2012 • unexpected OS deadlocks reported by Bull Blitter Display On-Chip level STBus SoC Utah NoC 2D Mesh NoC DES Asynchronous logic FAUST/MAGALI Low-level 1995 2000 2005 2010 2015 Application of CADP to Hardware Validation 15/10/2014

  8. 20 Years of Hardware Validation with CADP 8 High-level NovaScale/FAME NovaScale/FAME Supercomputers FAME2 Polykid • 64-bit high-end servers SCSI-2 based on Intel's Itanium-2 Multiprocessor xSTream AMBA ACE SoC • CC-NUMA CC-NUMA architecture Powerscale Platform2012 • focus on most critical, asynchronous parts Blitter Display On-Chip level STBus SoC Utah NoC 2D Mesh NoC DES Asynchronous logic FAUST/MAGALI Low-level 1995 2000 2005 2010 2015 Application of CADP to Hardware Validation 15/10/2014

  9. 20 Years of Hardware Validation with CADP 9 High-level NovaScale/FAME STBus SoC Supercomputers FAME2 Polykid • STBus interconnect protocol SCSI-2 • dedicated to high bandwidth Multiprocessor xSTream AMBA ACE SoC SoCs CC-NUMA Powerscale Platform2012 • audio-video processing Blitter Display On-Chip level STBus SoC Utah NoC 2D Mesh NoC DES Asynchronous logic FAUST/MAGALI Low-level 1995 2000 2005 2010 2015 Application of CADP to Hardware Validation 15/10/2014

  10. 20 Years of Hardware Validation with CADP 10 High-level NovaScale/FAME FAME 2 Supercomputers FAME2 Polykid • multiprocessor architectures SCSI-2 • CC-DSM: cache coherent- distributed shared memory Multiprocessor xSTream AMBA ACE SoC CC-NUMA • MPI benchmark: ping-pong Powerscale Platform2012 protocol • performance Blitter Display On-Chip level prediction STBus SoC Utah NoC 2D Mesh NoC DES Asynchronous logic FAUST/MAGALI Low-level 1995 2000 2005 2010 2015 Application of CADP to Hardware Validation 15/10/2014

  11. 20 Years of Hardware Validation with CADP 11 High-level NovaScale/FAME DES Supercomputers FAME2 Polykid SCSI-2 • Data Encryption Standard • asynchronous circuit Multiprocessor xSTream AMBA ACE SoC CC-NUMA • no clock: gates evolve Powerscale Platform2012 concurrently and synchronize via handshake protocols Blitter Display On-Chip level • no constraints on STBus SoC Utah NoC communication 2D Mesh NoC delays DES Asynchronous logic FAUST/MAGALI Low-level 1995 2000 2005 2010 2015 Application of CADP to Hardware Validation 15/10/2014

  12. 20 Years of Hardware Validation with CADP 12 High-level NovaScale/FAME FAUST/MAGALI Supercomputers FAME2 Polykid • GALS architecture SCSI-2 • asynchronous NoC • CHP (communi- Multiprocessor xSTream AMBA ACE SoC CC-NUMA cating Hardware Powerscale Platform2012 Processes) model Blitter Display On-Chip level STBus SoC Utah NoC 2D Mesh NoC DES Asynchronous logic FAUST/MAGALI Low-level 1995 2000 2005 2010 2015 Application of CADP to Hardware Validation 15/10/2014

  13. 20 Years of Hardware Validation with CADP 13 High-level NovaScale/FAME xSTream Supercomputers • multiprocessor FAME2 Polykid dataflow architecture SCSI-2 • high performance embedded Multiprocessor xSTream AMBA ACE SoC multimedia streaming CC-NUMA Powerscale Platform2012 applications • expected Performance Blitter Display On-Chip level measures: STBus SoC • latency Utah NoC • throughput 2D Mesh NoC DES • resource utilization Asynchronous logic FAUST/MAGALI Low-level 1995 2000 2005 2010 2015 Application of CADP to Hardware Validation 15/10/2014

  14. 20 Years of Hardware Validation with CADP 14 High-level NovaScale/FAME Blitter Display Supercomputers FAME2 • MULTIVAL project Polykid • 2D graphics co-processor SCSI-2 implementing BLIT (Block Multiprocessor xSTream AMBA ACE SoC CC-NUMA Image Transfer) and numerous Powerscale Platform2012 graphical operators • SystemC/TLM model Blitter Display On-Chip level STBus SoC Utah NoC 2D Mesh NoC DES Asynchronous logic FAUST/MAGALI Low-level 1995 2000 2005 2010 2015 Application of CADP to Hardware Validation 15/10/2014

  15. 20 Years of Hardware Validation with CADP 15 High-level NovaScale/FAME 2D Mesh NoC Supercomputers FAME2 Polykid • 5x5 2D-mesh NoC SCSI-2 • predict mean latency of Multiprocessor xSTream AMBA ACE SoC end-to-end communication CC-NUMA Powerscale Platform2012 Blitter Display On-Chip level STBus SoC Utah NoC 2D Mesh NoC DES Asynchronous logic FAUST/MAGALI Low-level 1995 2000 2005 2010 2015 Application of CADP to Hardware Validation 15/10/2014

  16. 20 Years of Hardware Validation with CADP 16 High-level NovaScale/FAME Platform2012 DTD Supercomputers FAME2 Polykid • Dynamic Task Dispatcher SCSI-2 • tasks divided in concurrently Multiprocessor xSTream AMBA ACE SoC executable sub-tasks (same CC-NUMA Powerscale Platform2012 code, different data) • dedicated hardware to switch Blitter Display On-Chip level tasks in only few clock cycles STBus SoC Utah NoC 2D Mesh NoC DES Asynchronous logic FAUST/MAGALI Low-level 1995 2000 2005 2010 2015 Application of CADP to Hardware Validation 15/10/2014

  17. 20 Years of Hardware Validation with CADP 17 High-level NovaScale/FAME Utah NoC Supercomputers FAME2 Polykid • two-dimensional mesh SCSI-2 • routing algorithm tolerating Multiprocessor xSTream AMBA ACE SoC link faults CC-NUMA Powerscale • Platform2012 check absence of deadlocks Blitter Display On-Chip level STBus SoC Utah NoC 2D Mesh NoC DES Asynchronous logic FAUST/MAGALI Low-level 1995 2000 2005 2010 2015 Application of CADP to Hardware Validation 15/10/2014

  18. 20 Years of Hardware Validation with CADP 18 High-level NovaScale/FAME AMBA ACE SoC Supercomputers FAME2 • heterogeneous SoC Polykid • ACE protocol: system level SCSI-2 cache coherency standard Multiprocessor xSTream AMBA ACE SoC • support for ARM@Big.LITTLE TM CC-NUMA Powerscale Platform2012 • integrated to STMicro set top box SoC for multiple Ultra HD Blitter Display On-Chip level STBus SoC Utah NoC 2D Mesh NoC DES Asynchronous logic FAUST/MAGALI Low-level 1995 2000 2005 2010 2015 Application of CADP to Hardware Validation 15/10/2014

  19. Four Types of Studies 19 • Formal Modeling • Functional Verification • Model-based Testing • Performance Evaluation Application of CADP to Hardware Validation 15/10/2014

  20. Formal Modeling 20 • Modeling languages used in these case studies • Before 2008-2009: LOTOS • Since then: LNT • LOTOS vs LNT • Both are formal languages to describe asynchronously-concurrent systems • LNT more convenient for human users • LNT closer to programing languages and hardware languages (such as VHDL) • Starting point for producing formal models: • Natural language descriptions (English text, tables, diagrams) • Programs in other hardware languages (CHP, SystemC/TLM, etc.) • Guidelines must be followed when developing formal models: • Focus on complex parts of the system (parallelism, concurrency, etc.) • Use abstractions to hide irrelevant details Application of CADP to Hardware Validation 15/10/2014

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend