computational fluid dynamics cfd chd
play

Computational Fluid Dynamics (CFD, CHD)* PDE (Shocks 1st); Part I: - PowerPoint PPT Presentation

Computational Fluid Dynamics (CFD, CHD)* PDE (Shocks 1st); Part I: Basics, Part II: Vorticity Fields Rubin H Landau Sally Haerer, Producer-Director Based on A Survey of Computational Physics by Landau, Pez, & Bordeianu with Support from


  1. Computational Fluid Dynamics (CFD, CHD)* PDE (Shocks 1st); Part I: Basics, Part II: Vorticity Fields Rubin H Landau Sally Haerer, Producer-Director Based on A Survey of Computational Physics by Landau, Páez, & Bordeianu with Support from the National Science Foundation Course: Computational Physics II 1 / 1

  2. Problem: Placement of Boulders for Migrating Salmon Wake Block “Force” of River? River River surface surface y y H L x x L bottom bottom Deep, wide, fast-flowing streams “Boulder” = long rectangular beam, plates Objects not disturb surface/bottom flow Problem: large enough wake for 1m salmon 2 / 1

  3. Theory: Hydrodynamics Assumptions; Continuity Equation River River surface surface y y H L x x L bottom bottom ∂ρ ( x , t ) + � ∇ · j = 0 (1) ∂ t def j = ρ v ( x , t ) (2) (1): Continuity equation ⇒ ρ = constant Friction (viscosity) 1st eqtn hydrodynamics Incompressible fluid Steady state, v � = v ( t ) 3 / 1

  4. Navier–Stokes: 2nd Hydrodynamic Equation Hydrodynamic Time Derivative D v ∇ ) v + ∂ v def ( v · � = (1) Dt ∂ t For quantity within moving fluid Rate of change wrt stationary frame Velocity of material in fluid element Change due to motion + explicit t dependence D v / Dt : 2nd O v ⇒ nonlinearities ∼ Fictitious (inertial) forces Fluid’s rest frame accelerates 4 / 1

  5. Now Really the Navier–Stokes Equation Transport Fluid Momentum Due to Forces & Flow D v = ν ∇ 2 v − 1 � ∇ P ( ρ, T , x ) (Vector Form) (1) Dt ρ z z ∂ 2 v x ∂ v x v j ∂ v x ∂ P − 1 � � ∂ t + = ν (x component) (2) ∂ x j ∂ x 2 ρ ∂ x j j = x j = x ν = viscosity, P = pressure ν ∇ 2 v : due to viscosity Recall d p / dt = F P ( ρ, T , x ) : equation state def = ( v · � D v / Dt ∇ ) v + ∂ v /∂ t Assume = P ( x ) v · ∇ v : transport via flow Steady-state ⇒ ∂ t v i = 0 v · ∇ v : advection Incompressible ⇒ ∂ t ρ = 0 � ∇ P : change due to ∆ P 5 / 1

  6. Resulting Hydrodynamic Equations Assumed: Steady State, Incompressible, P = P ( x ) ∂ v i � � ∇ · v ≡ = 0 (Continuity) (1) ∂ x i i ∇ ) v = ν ∇ 2 v − 1 ( v · � � ∇ P (Navier–Stokes) (2) ρ (1) Continuity equation: Incompressibility, in = out Stream width ≫ beam z dimension ⇒ ∂ z v ≃ 0 ⇒ ∂ v x ∂ x + ∂ v y = 0 (3) ∂ y � ∂ 2 v x ∂ x 2 + ∂ 2 v x � = v x ∂ v x ∂ x + v y ∂ v x ∂ P ∂ y + 1 ν (4) ∂ y 2 ρ ∂ x � ∂ 2 v y ∂ x 2 + ∂ 2 v y � = v x ∂ v y ∂ x + v y ∂ v y ∂ y + 1 ∂ P ν (5) ∂ y 2 ρ ∂ y 6 / 1

  7. Boundary Conditions for Parallel Plates Physics Determines BC ⇒ Unique Solution L H Constant stream velocity + Upstream unaffected Low V 0 , high viscosity ⇒ Solve rectangular region Laminar: smooth, no cross L , H ≪ R stream ⇒ uniform down ⇒ streamlines of motion Far top, bot ⇒ symmetry Thin plates ⇒ laminar flow 7 / 1

  8. Analytic Solution for Parallel Plates (See Text) Bernoulli Effect: Pressure Drop Through Plates River River surface surface y y H L x x L bottom bottom 1 ∂ P ∂ x ( y 2 − yH ) v x ( y ) = (1) 2 ρν ∂ P = known constant (2) ∂ x V 0 = 1 m/s , ρ = 1 kg/m 3 , ν = 1 m 2 / s , H = 1 m (3) ⇒ ∂ P = − 12 , v x ( y ) = 6 y ( 1 − y ) (4) ∂ x 8 / 1

  9. Finite-Difference Navier–Stokes Algorithm + SOR Rectangular grid x = ih , y = jh 3 Simultaneous equations → 2 ( v y ≡ 0) v x i + 1 , j − v x i − 1 , j + v y i , j + 1 − v y i , j − 1 = 0 (1) v x i + 1 , j + v x i − 1 , j + v x i , j + 1 + v x i , j − 1 − 4 v x (2) i , j = h + h + h 2 v x v x i + 1 , j − v x 2 v y v x i , j + 1 − v x � � � � 2 [ P i + 1 , j − P i − 1 , j ] i , j i − 1 , j i , j − 1 i , j Rearrange as algorithm for Successive Over Relaxation i , j − 1 − h 4 v x i , j = v x i + 1 , j + v x i − 1 , j + v x i , j + 1 + v x 2 v x v x i + 1 , j − v x � � i , j i − 1 , j − h − h 2 v y v x i , j + 1 − v x � � 2 [ P i + 1 , j − P i − 1 , j ] (3) i , j − 1 i , j Accelerate convergence + SOR; ω > 2 unstable 9 / 1

  10. End Part I: Basics River River surface surface y y H L x x L bottom bottom 10 / 1

  11. Part II: Vorticity Form of Navier–Stokes Equation 2 HD Equations in Terms of Stream Function u ( x ) � ∇ · v = 0 Continuity (1) ∇ ) v = − 1 ( v · � ∇ P + ν ∇ 2 v � Navier–Stokes (2) ρ Like EM, simpler via (scalar & vector) potentials Irrotational Flow: no turbulence, scalar potential Rotational Flow: 2 vector potentials; 1st stream function def = � v ∇ × u ( x ) (3) � ∂ u z � ∂ u x ∂ y − ∂ u y � ∂ z − ∂ u z � = ˆ ǫ x + ˆ ǫ y (4) ∂ z ∂ x ∇ · ( � � ∇ × u ) ≡ 0 ⇒ automatic continuity equation 11 / 1

  12. 2 HD Equations in Terms of Stream Function (cont) 2-D flow: u = Constant Contour Lines = Streamlines def = � ∇ × u ( x ) v (1) � ∂ u z � ∂ u x ∂ y − ∂ u y � ∂ z − ∂ u z � = ˆ ǫ x + ˆ ǫ y (2) ∂ z ∂ x v z = 0 ⇒ u ( x ) = u ˆ ǫ z (3) v x = ∂ u v y = − ∂ u ⇒ ∂ y , (4) ∂ x 12 / 1

  13. Introduce Vorticity w ( x ) ∼ � ω Vortex: Spinning, Often Turbulent Fluid Flow def = � w ∇ × v ( x ) (1) � ∂ v y ∂ x − ∂ v x � w z = (2) ∂ y Measure of � v ’s rotation w = 0 ⇒ uniform RH rule fluid element Moving field lines w = 0 ⇒ irrotational Relate to stream function: 13 / 1

  14. Introduce Vorticity w ( x ) ∼ � ω ∼ Poisson’s equation ∇ 2 φ = − 4 πρ w(x,y) 0 12 y -1 6 20 0 y 0 40 80 x x 50 0 = � def w ∇ × v ( x ) (1) w = � ∇ × v = � ∇ × ( � ∇ × u ) = � ∇ ( � ∇ · u ) − ∇ 2 u (2) ǫ z ⇒ � yet u = u ( x , y ) ˆ ∇ · u = 0 (3) ⇒ � ∇ 2 u = − w (4) Like Poisson with ea w component = source 14 / 1

  15. Vorticity Form of Navier–Stokes Equation Take Curl of Velocity Form ∇ ) v = ν ∇ 2 v − 1 � � � ( v · � � ∇ × ∇ P (Navier–Stokes) (1) ρ ν ∇ 2 w = [( � ∇ × u ) · � ∇ ] w (2) In 2-D + only z components: ∂ x 2 + ∂ 2 u ∂ 2 u ∂ y 2 = − w (3) � ∂ 2 w ∂ x 2 + ∂ 2 w � = ∂ u ∂ w ∂ x − ∂ u ∂ w ν (4) ∂ y 2 ∂ y ∂ x ∂ y Simultaneous, nonlinear, elliptic PDEs for u & w ∼ Poisson’s + wave equation + friction + variable ρ 15 / 1

  16. Relaxation Algorithm (SOR) for Vorticity Equations x = ih , y = jh CD Laplacians, 1st derivatives u i , j = 1 � � u i + 1 , j + u i − 1 , j + u i , j + 1 + u i , j − 1 + h 2 w i , j (1) 4 w i , j = 1 4 ( w i + 1 , j + w i − 1 , j + w i , j + 1 + w i , j − 1 ) − R 16 { [ u i , j + 1 − u i , j − 1 ] × [ w i + 1 , j − w i − 1 , j ] − [ u i + 1 , j − u i − 1 , j ] [ w i , j + 1 − w i , j − 1 ] } (2) R = 1 ν = V 0 h (in normal units ) (3) ν R = grid Reynolds number ( h → R pipe ); measure nonlinear Small R : smooth flow, friction damps fluctuations Large R ( ≃ 2000): laminar → turbulent flow Onset of turbulence: hard to simulate (need kick) 16 / 1

  17. Boundary Conditions for Beam Surface G vx = du/dy = V0 w = 0 vy = -du/dx = 0 H F vx = du/dy = V0 du/dx = 0 Outlet Inlet u = 0 dw/dx = 0 w = 0 C Half u = 0 Beam vy = -du/dx = 0 y w = u = 0 D B w = u = 0 x E A center line Well-defined solution of elliptic PDEs requires u , w BC Assume inlet, outlet, surface far from beam Freeflow: No beam NB w = 0 ⇒ no rotation Symmetry: identical flow above, below centerline, not thru 17 / 1

  18. Boundary Conditions for Beam (cont) See Text for More Explanations Centerline: = streamline, u = const =0 (no v ⊥ No flow in, out beam to it ⇒ u = 0 all beam surfaces Symmetry ⇒ vorticity w = 0 along centerline Inlet: horizontal fluid flow, v = v x = V 0 : Surface: Undisturbed ⇒ free-flow conditions: Outlet: Matters little; convenient choice: ∂ x u = ∂ x w Beamsides: v ⊥ = u = 0; viscous ⇒ v � = 0 Yet, over specify BC ⇒ only no-slip vorticity w : Viscosity ⇒ v x = ∂ u ∂ y = 0 (beam top) Smooth flow on beam top ⇒ v y = 0 + no x variation: ∂ y = − ∂ 2 u ∂ v y ∂ x = 0 ⇒ w = − ∂ v x (1) ∂ y 2 18 / 1 Taylor series ⇒ finite-difference top BC:

  19. Implementation & Assessment:SOR on a Grid Basic soltn vorticity form Navier–Stokes: Beam.py NB relaxation = simple, BC � = simple Separate relaxation of stream function & vorticity Explore convergence of up & downstream u Determine number iterations for 3 place with ω = 0 , 0 . 3 Change beam’s horizontal position so see wave develop Make surface plots of u , w , v with contours; explain Is there a resting place for salmon? 19 / 1

  20. Results w(x,y) 12 0 y -1 6 20 0 0 y 40 80 x x 50 0 20 / 1

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend