compositional grading theory and practice
play

Compositional Grading Theory and Practice Lars Hier , Statoil Curtis - PowerPoint PPT Presentation

SPE 63085 Compositional Grading Theory and Practice Lars Hier , Statoil Curtis H. Whitson , NTNU and Pera Theory Simple 1D Gradient Models Isothermal Gravity/Chemical Equilibrium Defining General Characteristics Different


  1. SPE 63085 Compositional Grading Theory and Practice Lars Høier , Statoil Curtis H. Whitson , NTNU and Pera

  2. “Theory” Simple 1D Gradient Models • Isothermal Gravity/Chemical Equilibrium – Defining General Characteristics • Different Fluid Systems (SPE 28000) • Quantifying Variations • Non-Isothermal Models with Thermal Diffusion. – Quantitative Comparisons • Different Models • Different Fluid Systems

  3. “Practice” • Using Samples • Quantifying Uncertainties … Develop a Consistent EOS Model • Defining Trends • Fluid Communication • Initializing Reservoir Models • Predicting a Gas-Oil Contact • History Matching

  4. Isothermal Gradient Model • Balance of chemical and gravity potentials • Given … { H ref , p Rref , T ref , z iref } … calculate – z i (H) – p R (H) – p sat (H) • IOIP(H) ~ z C7+ (H)

  5. Isothermal Gradient Model C 7+ , mole fraction 0.00 0.05 0.10 0.15 0.20 0.25 0.30 4500 Reservoir Pressure 4600 C 7+ Reference Sample Depth, m 4700 4800 Saturation 4900 Pressure 5000 400 425 450 475 500 525 Pressure, bara

  6. IOIP(H) ~ z C7+ (H) C 7+ , mol-% 0% 5% 10% 15% 20% 25% 30% 4500 4600 Reference Sample Depth, m 4700 GOC 4800 STO Oil Added Using Gradient 4900 Calculation 5000 400 425 450 475 500 525

  7. Non-Isothermal Gradient Models • Component Net Flux = Zero – Chemical Energy – Gravity – Thermal Diffusion ??? • Given … { H ref , p Rref , T ref , z iref } … calculate – z i (H) – p R (H) T(H) – p sat (H)

  8. Non-Isothermal Gradients Thermal Diffusion Models G T • Thermodynamic – Haase – Kempers G T T • Thermodynamic / Viscosity – Dougherty-Drickhamer (Belery-da Silva) – Firoozabadi-Ghorayeb G T • “Passive” – Thermal Diffusion = 0 , ∇ T ≠ 0

  9. Ekofisk Example -9400 Isothermal GCE Haase -9700 Kempers Belery, da Silva (25%) Firoozabadi-Ghorayeb Depth, ft SSL -10000 -10300 -10600 -10900 15 20 25 30 C 7+ Mole Percent

  10. Cupiagua Reference Depth GOC -11000 -12000 Field-Data Isothermal Depth, ft SSL Model Based Initialization -13000 -14000 -15000 4000 5000 6000 7000 Pressure, psia

  11. Cupiagua Reference Depth GOC -11000 -12000 Depth, ft SSL Field-Data Based Isothermal Initialization Model -13000 -14000 -15000 0.2 0.4 0.6 0.8 IOIP / HCPV, (Sm 3 / m 3 )

  12. Cupiagua Reference Depth GOC -11000 -12000 Depth, ft SSL Field-Data Based Isothermal Initialization Model -13000 -14000 -15000 10 15 20 25 30 35 C 7+ Mole Percent

  13. Theory – Summary • Isothermal model gives maximum gradient • Convection tends to eliminate gradients • Non-isothermal models generally give a gradient between these two extremes

  14. Complicating Factors when traditional 1D models are inadequate • Thermally-induced convection • Stationary State not yet reached • Dynamic aquifer depletes light components • Asphaltene precipitation • Varying PNA distribution of C 7+ components • Biodegredation • Regional methane concentration gradients • Multiple source rocks

  15. “Practice” • Using Samples • Quantifying Uncertainties … Develop a Consistent EOS Model • Defining Trends • Fluid Communication • Initializing Reservoir Models • History Matching

  16. Using Samples • Plot C 7+ mol-% versus depth • z C7+ ~ 1/B o = OGR/B gd – i.e. IOIP=f(depth) Quantifying Uncertainty • Use error bars for depth & composition – ∆ C 7+ ≈ ∆ OGR / (C o + ∆ OGR) C o =(M/ ρ ) 7+ (p sc /RT sc )

  17. Åsgard, Smørbukk Field Geologic Layer “A” 3800 4000 True Vertical Depth, mSS 4200 Well B 4400 Well A DST 2 4600 Well A DST 1 Well C 4800 Well E Well D 5000 0 5 10 15 20 25 30 35 C 7+ Mole Percent

  18. Develop a Consistent EOS • Use All Available Samples with – Reliable Compositions – Reliable PVT Data • Fit Key PVT and Compositional Data – Reservoir Densities – Surface GORs, FVFs, STO Densities – CVD Gas C 7+ Composition vs Pressure – Reservoir Equilibrium Phase Compositions

  19. Defining Trends Use All Samples Available • Sample Exploration Wells – Separator Samples – Bottomhole Samples – MDT Samples (water-based mud only) • Oil Samples may be Corrected • Gas Samples with Oil-Based Mud should not be used

  20. Defining Trends Use All Samples Available • Production Wells – “Early” Data not yet affected by • Significant Depletion • Gas Breakthrough • Fluid Displacement / Movement

  21. Defining Trends • Any sample's “value” in establishing a trend is automatically defined by inclusion of the samples error bars in depth and composition. • Samples considered more insitu-representative are given more "weight" in trend analysis.

  22. Fluid Communication • Compute isothermal gradient for each and every sample • Overlay all samples with their predicted gradients – Don’t expect complete consistency – Do the gradient predictions have similar shape ? – Do the gradient predictions cover similar range in C 7+ ?

  23. Åsgard, Smørbukk Field Geologic Layer “A” 3800 4000 True Vertical Depth, mSS 4200 Well B 4400 4600 Well D Well A DST 2 Well E 4800 Well A DST 1 Well C 5000 0 5 10 15 20 25 30 35 C 7+ Mole Percent

  24. Orocual Field Venezuela 12,000 Structurally High Wells ORS-54 ORS-54 ORS-56 ORS-65 13,000 Mid-Perforation Depth, ft SS 14,000 ORC-25 15,000 ORS-66 16,000 0 5 10 15 20 25 C7+ Mole Percent

  25. Initializing Reservoir Models • Linear interpolation between “select” samples – Guarantees Automatic “History Matching” – Check for consistent of p sat vs depth • Extrapolation – Sensitivity 1 : isothermal gradient of outermost samples – Sensitivity 2 : constant composition of outermost samples

  26. Åsgard, Smørbukk Field Geologic Layer “A” 3800 4000 True Vertical Depth, mSS 4200 Well B 4400 4600 Well D Well A DST 2 Well E Well A DST 1 4800 Well C 5000 0 5 10 15 20 25 30 35 C 7+ Mole Percent

  27. Åsgard, Smørbukk Field Geologic Layer “A” 3800 4000 True Vertical Depth, mSS 4200 Well B 4400 4600 Well D Well A DST 2 Well E Well A DST 1 4800 Well C 5000 0 5 10 15 20 25 30 35 C 7+ Mole Percent

  28. Predicting a Gas-Oil Contact … “Dangerous” but Necessary • Use Isothermal Gradient Model – Predicts minimum distance to GOC • Most Uncertain Prediction using Gas Samples – 10 – 50 m oil column per bar uncertainty in dewpoint ! – 2 – 10 ft oil column per psi uncertainty in dewpoint ! … Treat dewpoints (and bubblepoints) with special care

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend