come on down an invitation to barker polynomials
play

Come on Down! An Invitation to Barker Polynomials 5.0 4.5 4.0 - PowerPoint PPT Presentation

Come on Down! An Invitation to Barker Polynomials 5.0 4.5 4.0 3.5 I c e r m 3.0 2.5 0.0 0.1 0.2 0.3 0.4 0.5 Introduction to Topics Michael Mossinghoff Summer@ICERM 2014 Davidson College Brown University Engineers Barker


  1. Come on Down! An Invitation to Barker Polynomials 5.0 4.5 4.0 3.5 I c e r m 3.0 2.5 0.0 0.1 0.2 0.3 0.4 0.5 Introduction to Topics Michael Mossinghoff Summer@ICERM 2014 Davidson College Brown University

  2. Engineers

  3. Barker Sequences • a 0 , a 1 , ..., a n − 1 : finite sequence, each ±1. • For 0 ≤ k ≤ n − 1, define the k th aperiodic autocorrelation by n − k − 1 X c k = a i a i + k . i =0 • k = 0: peak autocorrelation. • k > 0: o ff -peak autocorrelations. • Goal: make o ff -peak values small. • Barker sequence : | c k | ≤ 1 for k > 0.

  4. Engineering Motivation • { a i } ↔ binary digital signal. • c k ↔ output when two signals are out of phase by k units. • Peak at k = 0 facilitates synchronization. • R. H. Barker (1953): Group synchronization of binary digital systems . • Want c 0 large compared to other c k .

  5. Example +++--+- +++--+- c 0 = 7 c 1 = 0 c 2 = − 1 c 3 = 0 c 4 = − 1 c 5 = 0 c 6 = − 1

  6. All(?) Barker Sequences Some n Sequence + 1 ++ 2 ++- 3 +++- 4 +++-+ 5 +++--+- 7 +++---+--+- 11 +++++--++-+-+ 13

  7. Open Problem • Barker (1953): Do any Barker sequences exist with length n > 13? • Turyn and Storer (1961): If n is odd then n ≤ 13. • Are there any with even length n > 4?

  8. Analysts

  9. n − 1 n − 1 a k z k = a n − 1 X Y • Let f ( z ) = ( z − β k ). k =0 k =1 • Let k f k p denote the L p norm of f : ◆ 1 /p ✓Z 1 | f ( e 2 π it ) | p dt k f k p = . 0 • Limit as p → ∞ : sup norm : k f k ∞ = sup | f ( z ) | . | z | =1 • Limit as p → 0 + : Mahler measure : ✓Z 1 ◆ log | f ( e 2 π it ) | dt M ( f ) = exp . 0

  10. • Jensen’s formula in complex analysis produces n − 1 Y M ( f ) = | a n − 1 | max { 1 , | β k |} . k =1 • p  q implies k f k p  k f k q . n − 1 X • Parseval’s formula: k f k 2 | a k | 2 . 2 = k =0 • Erd˝ os conjecture (1962): There exists ✏ > 0 so that if n � 2 and f ( x ) = ± 1 ± x ± · · · ± x n − 1 then k f k ∞ p n > 1 + ✏ . • Stronger form: k f k 4 p n > 1 + ✏ .

  11. Quick Calculation k f k 4 4 = k f ( z ) f ( z ) k 2 2 = k f ( z ) f (1 /z ) k 2 2 2 � � 0 1 n − 1 � � X @ X � A z k � a i a j = � � � � i − j = k k = − ( n − 1) � � 2 2 � � n − 1 � � X c k z k � � = � � � � k = − ( n − 1) � � 2 n − 1 = n 2 + 2 X c 2 k . k =1

  12. • Golay defined the merit factor of a sequence a of length n over {–1, +1} by n 2 MF( a ) = . 2 P n − 1 k =1 c 2 k • Engineering: peak energy vs. sidelobe energy. • Barker sequence of length n has MF ≈ n . • Best known merit factor for binary seq.: 14.083. • Problem: find long {–1,1} sequences with large merit factor. • Equivalent formulation, building f ( z ) from a : k f k 4 1 2 MF( f ) = = . ( k f k 4 / p n ) 4 � 1 k f k 4 4 � k f k 4 2

  13. Periodic Barker Sequences

  14. Periodic Barker Sequences • The k th periodic autocorrelation : n − 1 � γ k = a i a ( i + k mod n ) . i =0 • Note that • Example: +++ −− + − γ 2 = a 0 a 2 + a 1 a 3 + · · · + a n − 3 a n − 1 − +++ −− + + −− + − ++ − + − +++ − + − +++ −− −− + − +++ ++ −− + − + + a n − 2 a 0 + a n − 1 a 1 γ 0 = 7 . = c 2 + c n − 2 . γ 4 = − 1 . γ 1 = − 1 . • In the same way, γ k = c k + c n − k for 0 < k < n. γ 2 = − 1 . γ 5 = − 1 . γ 3 = − 1 . γ 6 = − 1 . • Periodic Barker sequence : | γ k | ≤ 1 for k > 0 .

  15. Theorem: Every Barker sequence with length n > 2 is a periodic Barker sequence. • If a , b = ±1 then ab ≡ a + b − 1 mod 4. • c k ≡ ∑ i ( a i + a i + k ) − ( n − k ) mod 4. • c k − c k +1 ≡ a n − 1 − k + a k − 1 mod 4. • c n − 1 − k − c n − k ≡ a n − 1 − k + a k − 1 mod 4. • c k − c k +1 ≡ c n − 1 − k − c n − k mod 4. • c k − c k +1 = c n − 1 − k − c n − k . • γ k = γ k +1 for 0 < k < n − 1.

  16. Theorem: Every Barker sequence with length n > 2 is a periodic Barker sequence. • So γ k = γ for 0 < k < n . • If | γ | = 2 then c k = c n − k = ±1 for each k . • But c k ≡ n − k mod 2. • So | γ | = 2 is impossible if n > 2. • Thus | γ | ≤ 1 . • Note: The converse is false!

  17. Theorem: Every Barker sequence with length n > 2 is a periodic Barker sequence. • Thus: the o ff -peak periodic autocorrelations of a Barker sequence of even length are all 0. • I.e., ( a 0 , …, a n − 1 ) is orthogonal to all cyclic shifts of itself. • The circulant matrix made from this sequence is Hadamard .

  18. Examples   + + + − + + +  −  ⇥ ⇤ +    , . + + + −  + + + − • Open problem: Show that if H is an n × n circulant Hadamard matrix with ±1 entries, then n ≤ 4. • This implies that no more Barker sequences exist.

  19. Restrictions

  20. Restriction 1 • Theorem (Turyn, 1965): If n > 2 is the order of a circulant Hadamard matrix, then n = 4 m 2 . Further, m is odd, and not a prime power. • Let J n = n x n matrix of all 1’s. • Let e = sum of entries of a row of H . ( HH T ) J n = ( nI n ) J n = nJ n . • H ( H T J n ) = H ( eJ n ) = e 2 J n . • So n = 4 m 2 . •

  21. Restriction 2: Self-Conjugacy • a is semiprimitive mod b : a j ≡ − 1 mod b for some j . • r is self-conjugate mod s : For each p | r , p is semiprimitive mod the p -free part of s . • Theorem (Turyn): If n = 4 m 2 is the order of a CHM, r | m , s | n , gcd( r , s ) has k ≥ 1 distinct prime divisors, and r is self-conjugate mod s , then rs ≤ 2 k − 1 n .

  22. Special Case: Large Primes • Theorem (Turyn): If n = 4 m 2 is the order of a CHM, r | m , s | n , gcd( r , s ) has k ≥ 1 distinct prime divisors, and r is self-conjugate mod s , then rs ≤ 2 k − 1 n . • Suppose p is odd and p | m . Take r = p , s = 2 p 2 . • p is semiprimitive mod 2. • r is self-conjugate mod s . • Thus p 3 ≤ 2 m 2 . • Corollary : If p k | m and p 3 k > 2 m 2 , then no circulant Hadamard matrix of size n = 4 m 2 exists.

  23. Restriction 3: F -Test • ν p ( m ) = multiplicity of p in factorization of m . Y • m q = q -free and squarefree part of m : m q = p . p | m p � = q

  24. Prior Bounds for CHMs Turyn (1968): m ≥ 55. • Schmidt (1999): m ≥ 165. • Schmidt (2002): If m ≤ 10 5 then m ∈ • {11715, 16401, 82005}.

  25. Restriction 4: Barker Only • Theorem (Eliahou, Kervaire, Sa ff ari, 1990): If n = 4 m 2 is the length of a Barker sequence and p | m , then p ≡ 1 mod 4. • Prior bounds: • Jedwab & Lloyd; Eliahou & Kervaire (1992): m ≥ 689. • Schmidt (1999): m > 10 6 . • Leung & Schmidt (2005): m > 5 ⋅ 10 10 . • No plausible value known in 2005!

  26. Example 1 • m = 689 = 13 ⋅ 53. • p = 13: ν 13 (53 12 − 1) + ν 13 (ord 13 (53)) = 1. • p = 53: ν 53 (13 52 − 1) + ν 53 (ord 53 (13)) = 1. • F (689) = 689.

  27. Example 2 • m = 11715 = 3 ⋅ 5 ⋅ 11 ⋅ 71. • p = 3: 71 2 ≡ 1 mod 3 2 . • p = 5: 5 | ord m /3 (3) = 140. • p = 11: 3 10 ≡ 1 mod 11 2 . • p = 71: 11 70 ≡ 1 mod 71 2 . • F (11715) = 11715 2 .

  28. Example 3 • m = 83661685751365 = 5 ⋅ 41 ⋅ 2953 ⋅ 138200401. • Survives F -test, but fails Turyn test! • r = 5 ⋅ 2953, s = 138200401 2 r 2 . • 5 195768344658194100 ≣ − 1 mod s /5 2 . • 2953 2387418837295050 ≣ − 1 mod s /2953 2 . • rs > 2 n .

  29. Prior Work • M. (2009): If a Barker sequence of length n exists, then either n = 189 260 468 001 034 441 522 766 781 604, n > 2 ⋅ 10 30 . or • Leung & Schmidt (2012): Three new restrictions for the CHM problem. • Two apply to the Barker sequence problem.

  30. Prior Work • Leung & Schmidt (2012): If a Barker sequence of length n exists, n > 2 ⋅ 10 30 . then

  31. One New Criterion • Theorem (LS, 2012): If p a || m with p odd, p 2 a > 2 m , r | m / p a is self-conjugate mod p , and gcd(ord p ( q 1 ), …, ord p ( q s )) > m 2 / r 2 p 2 a , where q 1 , …, q s are the prime divisors of m / rp a , then there is no CHM of order 4 m 2 . n = 189 260 468 001 034 441 522 766 781 604, m = 13 ⋅ 41 ⋅ 2953 ⋅ 138200401 , p = 138200401, r = 2953, gcd(ord p (13), ord p (41)) = 959725 > 13 2 ⋅ 41 2 .

  32. Strategy

  33. Searching • Focus on F -test: need F ( m ) ≥ m φ ( m ). • Simplification 1: m is squarefree.

  34. • Simplification 2: F ( m ) = m 2 (or m 2 /3). 1 − 1 � ⇥ • Need F ( m ) ≥ m ϕ ( m ) = m 2 ⇤ . p p | m • If F ( m ) ≤ m 2 /r for some r | m then ⇥ − 1 � 1 − 1 ⇤ ≥ r. p p | m • Barker: r ≥ 5 cannot occur in the range considered. • CHM: only r = 3 is plausible. • Almost always need each b ( p , m ) = 2.

  35. Searching • For each p | m , we require either • q p − 1 ≡ 1 mod p 2 for some prime q | m , or • p | ord m / q ( q ) for some prime q | m . • Former: ( q , p ) is a Wieferich prime pair . • Latter: Requires p | ( r − 1) for some prime r | m .

  36. Wieferich Prime Pairs • “First case” of Fermat’s Last Theorem. • Suppose x p + y p = z p with p not a factor of x , y , or z . • Wieferich (1909): 2 p − 1 ≡ 1 mod p 2 . • Mirimano ff , Vandiver, Granville, et al.: q p − 1 ≡ 1 mod p 2 for q ≤ 113. • Catalan’s Conjecture. • (Mih ă ilescu) If x p – y q = 1, then q p − 1 ≡ 1 mod p 2 and p q − 1 ≡ 1 mod q 2 .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend