quaternary golay sequence pairs
play

Quaternary Golay Sequence Pairs Richard Gibson Department of - PowerPoint PPT Presentation

Quaternary Golay Sequence Pairs Richard Gibson Department of Mathematics Simon Fraser University Masters Thesis Defence November 6, 2008 Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 1 / 33 Outline 1 Background Quaternary Golay


  1. History of Golay sequences • There exist binary Golay pairs of length 2 a 10 b 26 c for all integers a , b , c ≥ 0 (Turyn, 1974). • All binary pairs of length less than 100 have been classified (Borwein and Ferguson, 2003). - i.e. each pair either derivable from some general construction method or identified as one of five “seed” pair • Multi-dimensional construction process: Can obtain Golay pairs from a series of shorter Golay pairs (Fiedler, Jedwab and Parker, 2008). - Explains all known binary and quaternary Golay sequences of length 2 m . There are only two nonexistence results for Golay sequences: • Binary Golay sequences must have even length (Marcel Golay, 1961). Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 10 / 33

  2. History of Golay sequences • There exist binary Golay pairs of length 2 a 10 b 26 c for all integers a , b , c ≥ 0 (Turyn, 1974). • All binary pairs of length less than 100 have been classified (Borwein and Ferguson, 2003). - i.e. each pair either derivable from some general construction method or identified as one of five “seed” pair • Multi-dimensional construction process: Can obtain Golay pairs from a series of shorter Golay pairs (Fiedler, Jedwab and Parker, 2008). - Explains all known binary and quaternary Golay sequences of length 2 m . There are only two nonexistence results for Golay sequences: • Binary Golay sequences must have even length (Marcel Golay, 1961). • The length of a binary Golay pair has no prime factor congruent to 3 modulo 4 (Eliahou, Kervaire and Saffari, 1991). Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 10 / 33

  3. History of Golay sequences • There exist binary Golay pairs of length 2 a 10 b 26 c for all integers a , b , c ≥ 0 (Turyn, 1974). • All binary pairs of length less than 100 have been classified (Borwein and Ferguson, 2003). - i.e. each pair either derivable from some general construction method or identified as one of five “seed” pair • Multi-dimensional construction process: Can obtain Golay pairs from a series of shorter Golay pairs (Fiedler, Jedwab and Parker, 2008). - Explains all known binary and quaternary Golay sequences of length 2 m . There are only two nonexistence results for Golay sequences: • Binary Golay sequences must have even length (Marcel Golay, 1961). • The length of a binary Golay pair has no prime factor congruent to 3 modulo 4 (Eliahou, Kervaire and Saffari, 1991). No nonexistence results for quaternary Golay sequences. Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 10 / 33

  4. Classifying Quaternary Golay Sequence Pairs Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 11 / 33

  5. Ordered quaternary Golay sequence pair counts In 2002, Craigen, Holzmann, and Kharaghani exhaustively found all ordered quaternary Golay sequence pairs of small length n : # pairs # pairs # pairs n n n 1 16 8 6656 15 0 2 64 9 0 16 106496 3 128 10 12288 17 0 4 512 11 512 18 24576 5 512 12 36864 19 0 6 2048 13 512 20 215040 ∗ 7 0 14 0 21 0 ∗ Frank Fiedler, personal communication. Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 12 / 33

  6. Ordered quaternary Golay sequence pair counts In 2002, Craigen, Holzmann, and Kharaghani exhaustively found all ordered quaternary Golay sequence pairs of small length n : # pairs # pairs # pairs n n n 1 16 8 6656 15 0 2 64 9 0 16 106496 3 128 10 12288 17 0 4 512 11 512 18 24576 5 512 12 36864 19 0 6 2048 13 512 20 215040 ∗ 7 0 14 0 21 0 • Using small “seed” pairs, how many of the pairs in the table above can be explained using the multi-dimensional construction process and other constructions? ∗ Frank Fiedler, personal communication. Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 12 / 33

  7. Ordered quaternary Golay sequence pair counts In 2002, Craigen, Holzmann, and Kharaghani exhaustively found all ordered quaternary Golay sequence pairs of small length n : # pairs # pairs # pairs n n n 1 16 8 6656 15 0 2 64 9 0 16 106496 3 128 10 12288 17 0 4 512 11 512 18 24576 5 512 12 36864 19 0 6 2048 13 512 20 215040 ∗ 7 0 14 0 21 0 • Using small “seed” pairs, how many of the pairs in the table above can be explained using the multi-dimensional construction process and other constructions? • How can we explain the existence of the seed pairs? ∗ Frank Fiedler, personal communication. Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 12 / 33

  8. Multi-dimensional construction process How do we use the multi-dimensional construction process? Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 13 / 33

  9. Multi-dimensional construction process How do we use the multi-dimensional construction process? • Input: m + 1 Golay sequence pairs of length n 0 , n 1 , ... n m , where m ≥ 1, to create a multi-dimensional object. Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 13 / 33

  10. Multi-dimensional construction process How do we use the multi-dimensional construction process? • Input: m + 1 Golay sequence pairs of length n 0 , n 1 , ... n m , where m ≥ 1, to create a multi-dimensional object. • Process multi-dimensional object... Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 13 / 33

  11. Multi-dimensional construction process How do we use the multi-dimensional construction process? • Input: m + 1 Golay sequence pairs of length n 0 , n 1 , ... n m , where m ≥ 1, to create a multi-dimensional object. • Process multi-dimensional object... • Output: A collection of Golay sequence pairs, all of length n 0 · n 1 · ... · n m · 2 m . Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 13 / 33

  12. Let’s use the multi-dimensional construction process We can construct ordered quaternary Golay sequence pairs using “seed” Golay pairs of length 1, 3 and 5 as follows: Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 14 / 33

  13. Let’s use the multi-dimensional construction process We can construct ordered quaternary Golay sequence pairs using “seed” Golay pairs of length 1, 3 and 5 as follows: � � 0 , 0 64 ordered pairs of � �→ length 1 · 1 · 2 = 2 � 0 , 0 � Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 14 / 33

  14. Ordered quaternary Golay sequence pair counts In 2002, Craigen, Holzmann, and Kharaghani exhaustively found all ordered quaternary Golay sequence pairs of small length n : # pairs # pairs # pairs n n n 1 16 8 6656 15 0 2 64 9 0 16 106496 3 128 10 12288 17 0 4 512 11 512 18 24576 5 512 12 36864 19 0 6 2048 13 512 20 215040 ∗ 7 0 14 0 21 0 ∗ Frank Fiedler, personal communication. Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 15 / 33

  15. Let’s use the multi-dimensional construction process We can construct ordered quaternary Golay sequence pairs using “seed” Golay pairs of length 1, 3 and 5 as follows: � � 0 , 0 64 ordered pairs of � �→ length 1 · 1 · 2 = 2 � 0 , 0 � Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 16 / 33

  16. Let’s use the multi-dimensional construction process We can construct ordered quaternary Golay sequence pairs using “seed” Golay pairs of length 1, 3 and 5 as follows: � � 0 , 0 64 ordered pairs of � �→ length 1 · 1 · 2 = 2 � 0 , 0 � � 0 , 0 � � 512 ordered pairs of �→ � 0 , 0 � length 1 · 1 · 1 · 2 2 = 4 � 0 , 0 � Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 16 / 33

  17. Ordered quaternary Golay sequence pair counts In 2002, Craigen, Holzmann, and Kharaghani exhaustively found all ordered quaternary Golay sequence pairs of small length n : # pairs # pairs # pairs n n n 1 16 8 6656 15 0 2 64 9 0 16 106496 3 128 10 12288 17 0 4 512 11 512 18 24576 5 512 12 36864 19 0 6 2048 13 512 20 215040 ∗ 7 0 14 0 21 0 ∗ Frank Fiedler, personal communication. Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 17 / 33

  18. Let’s use the multi-dimensional construction process We can construct ordered quaternary Golay sequence pairs using “seed” Golay pairs of length 1, 3 and 5 as follows: � � 0 , 0 64 ordered pairs of � �→ length 1 · 1 · 2 = 2 � � 0 , 0 � � 0 , 0 � 512 ordered pairs of �→ � � length 1 · 1 · 1 · 2 2 = 4 0 , 0 � � 0 , 0 Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 18 / 33

  19. Let’s use the multi-dimensional construction process We can construct ordered quaternary Golay sequence pairs using “seed” Golay pairs of length 1, 3 and 5 as follows: � � 0 , 0 64 ordered pairs of � �→ length 1 · 1 · 2 = 2 � � 0 , 0 � � 0 , 0 � 512 ordered pairs of �→ � � length 1 · 1 · 1 · 2 2 = 4 0 , 0 � � 0 , 0 � � 2 0 0 , 0 1 0 2048 ordered pairs of � �→ length 3 · 1 · 2 = 6 � 0 , 0 � Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 18 / 33

  20. Let’s use the multi-dimensional construction process We can construct ordered quaternary Golay sequence pairs using “seed” Golay pairs of length 1, 3 and 5 as follows: � � 0 , 0 64 ordered pairs of � �→ length 1 · 1 · 2 = 2 � � 0 , 0 � � 0 , 0 � 512 ordered pairs of �→ � � length 1 · 1 · 1 · 2 2 = 4 0 , 0 � � 0 , 0 � � 2 0 0 , 0 1 0 2048 ordered pairs of � �→ length 3 · 1 · 2 = 6 � 0 , 0 � � � 0 , 0 � 6144 ordered pairs of � � 0 , 0 �→ length 1 · 1 · 1 · 1 · 2 3 = 8 � � 0 , 0 � � 0 , 0 Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 18 / 33

  21. Let’s use the multi-dimensional construction process Continue as follows: Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 19 / 33

  22. Let’s use the multi-dimensional construction process Continue as follows: � 0 1 2 0 3 , 0 0 0 3 1 � 8192 pairs of � �→ length 10 � � 0 , 0 � � 2 0 0 , 0 1 0 � 36864 pairs of �→ � � 0 , 0 length 12 � � 0 , 0 � � 0 , 0 � � � 0 , 0 �→ 98304 pairs of length 16 � � 0 , 0 � � 0 , 0 � � 0 , 0 Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 19 / 33

  23. Let’s use the multi-dimensional construction process Coninue as follows: � 2 0 0 , 0 1 0 � 24576 pairs of � �→ length 18 � � 2 0 0 , 0 1 0 � � 0 1 2 0 3 , 0 0 0 3 1 � 147456 pairs of �→ � � 0 , 0 length 20 � � 0 , 0 Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 20 / 33

  24. Ordered quaternary Golay pairs left to explain # pairs # pairs # pairs # pairs # pairs # pairs n n n left to left to left to explain explain explain 1 16 0 8 6656 512 15 0 0 2 64 0 9 0 0 16 106496 8192 3 128 128 10 12288 4096 17 0 0 4 512 0 11 512 512 18 24576 0 5 512 512 12 36864 0 19 0 0 6 2048 0 13 512 512 20 215040 67584 7 0 0 14 0 0 21 0 0 Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 21 / 33

  25. Ordered quaternary Golay pairs left to explain # pairs # pairs # pairs # pairs # pairs # pairs n n n left to left to left to explain explain explain 1 16 0 8 6656 512 15 0 0 2 64 0 9 0 0 16 106496 8192 3 128 128 10 12288 4096 17 0 0 4 512 0 11 512 512 18 24576 0 5 512 512 12 36864 0 19 0 0 6 2048 0 13 512 512 20 215040 67584 7 0 0 14 0 0 21 0 0 • “Shared autocorrelation property” Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 21 / 33

  26. Ordered quaternary Golay pairs left to explain # pairs # pairs # pairs # pairs # pairs # pairs n n n left to left to left to explain explain explain 1 16 0 8 6656 512 15 0 0 2 64 0 9 0 0 16 106496 8192 3 128 128 10 12288 4096 17 0 0 4 512 0 11 512 512 18 24576 0 5 512 512 12 36864 0 19 0 0 6 2048 0 13 512 512 20 215040 67584 7 0 0 14 0 0 21 0 0 • “Shared autocorrelation property” • Multi-dimensional construction process with special length 8 pairs and a trivial length 1 pair Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 21 / 33

  27. Ordered quaternary Golay pairs left to explain # pairs # pairs # pairs # pairs # pairs # pairs n n n left to left to left to explain explain explain 1 16 0 8 6656 0 15 0 0 2 64 0 9 0 0 16 106496 0 3 128 128 10 12288 4096 17 0 0 4 512 0 11 512 512 18 24576 0 5 512 512 12 36864 0 19 0 0 6 2048 0 13 512 512 20 215040 67584 7 0 0 14 0 0 21 0 0 Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 21 / 33

  28. Ordered quaternary Golay pairs left to explain # pairs # pairs # pairs # pairs # pairs # pairs n n n left to left to left to explain explain explain 1 16 0 8 6656 0 15 0 0 2 64 0 9 0 0 16 106496 0 3 128 128 10 12288 4096 17 0 0 4 512 0 11 512 512 18 24576 0 5 512 512 12 36864 0 19 0 0 6 2048 0 13 512 512 20 215040 67584 7 0 0 14 0 0 21 0 0 • Symmetry Lemma: ( A , B ) are a Golay pair ⇔ ( A + B , A − B ) are a Golay pair (where A and B are in “multiplicative” notation). Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 21 / 33

  29. Ordered quaternary Golay pairs left to explain # pairs # pairs # pairs # pairs # pairs # pairs n n n left to left to left to explain explain explain 1 16 0 8 6656 0 15 0 0 2 64 0 9 0 0 16 106496 0 3 128 128 10 12288 4096 17 0 0 4 512 0 11 512 512 18 24576 0 5 512 512 12 36864 0 19 0 0 6 2048 0 13 512 512 20 215040 67584 7 0 0 14 0 0 21 0 0 • Symmetry Lemma: ( A , B ) are a Golay pair ⇔ ( A + B , A − B ) are a Golay pair (where A and B are in “multiplicative” notation). • Explains all remaining length 10 pairs and 2048 of the remaining length 20 pairs from binary Golay seed pairs. Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 21 / 33

  30. Ordered quaternary Golay pairs left to explain # pairs # pairs # pairs # pairs # pairs # pairs n n n left to left to left to explain explain explain 1 16 0 8 6656 0 15 0 0 2 64 0 9 0 0 16 106496 0 3 128 128 10 12288 0 17 0 0 4 512 0 11 512 512 18 24576 0 5 512 512 12 36864 0 19 0 0 6 2048 0 13 512 512 20 215040 65536 7 0 0 14 0 0 21 0 0 Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 21 / 33

  31. Ordered quaternary Golay pairs left to explain # pairs # pairs # pairs # pairs # pairs # pairs n n n left to left to left to explain explain explain 1 16 0 8 6656 0 15 0 0 2 64 0 9 0 0 16 106496 0 3 128 128 10 12288 0 17 0 0 4 512 0 11 512 512 18 24576 0 5 512 512 12 36864 0 19 0 0 6 2048 0 13 512 512 20 215040 65536 7 0 0 14 0 0 21 0 0 • Multi-dimensional construction process with special length 10 pairs and a trivial length 1 pair Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 21 / 33

  32. Ordered quaternary Golay pairs left to explain # pairs # pairs # pairs # pairs # pairs # pairs n n n left to left to left to explain explain explain 1 16 0 8 6656 0 15 0 0 2 64 0 9 0 0 16 106496 0 3 128 128 10 12288 0 17 0 0 4 512 0 11 512 512 18 24576 0 5 512 512 12 36864 0 19 0 0 6 2048 0 13 512 512 20 215040 0 7 0 0 14 0 0 21 0 0 Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 21 / 33

  33. Ordered quaternary Golay pairs left to explain # pairs # pairs # pairs # pairs # pairs # pairs n n n left to left to left to explain explain explain 1 16 0 8 6656 0 15 0 0 2 64 0 9 0 0 16 106496 0 3 128 128 10 12288 0 17 0 0 4 512 0 11 512 512 18 24576 0 5 512 512 12 36864 0 19 0 0 6 2048 0 13 512 512 20 215040 0 7 0 0 14 0 0 21 0 0 Let’s look at lengths 5 and 13... Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 21 / 33

  34. Lengths 5 and 13 G 5 , 1 = 0 0 0 3 1 G 5 , 2 = 0 1 2 0 3 quaternary Golay pair of length 5 G 13 , 1 = 0 0 0 1 2 0 0 3 0 2 0 3 1 G 13 , 2 = 0 1 2 2 2 1 2 0 0 3 2 0 3 quaternary Golay pair of length 13 Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 22 / 33

  35. Lengths 5 and 13 G 5 , 1 = 0 0 0 3 1 G 5 , 2 = 0 1 2 0 3 quaternary Golay pair of length 5 G 13 , 1 = 0 0 0 1 2 0 0 3 0 2 0 3 1 G 13 , 2 = 0 1 2 2 2 1 2 0 0 3 2 0 3 quaternary Golay pair of length 13 B 5 = 0 0 0 2 0 binary Barker sequence of length 5 B 13 = 0 0 0 0 0 2 2 0 0 2 0 2 0 binary Barker sequence of length 13 Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 22 / 33

  36. Lengths 5 and 13 (cont.) B 5 + G 5 , 1 = 0 0 0 1 1 = int( W 0 , X 0 ) B 5 + G 5 , 2 = 0 1 2 2 3 = int( Y 0 , Z 0 ) Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 23 / 33

  37. Lengths 5 and 13 (cont.) B 5 + G 5 , 1 = 0 0 0 1 1 = int( W 0 , X 0 ) B 5 + G 5 , 2 = 0 1 2 2 3 = int( Y 0 , Z 0 ) B 13 + G 13 , 1 = 0 0 0 1 2 2 2 3 0 0 0 1 1 = int( W 1 , X 1 ) B 13 + G 13 , 2 = 0 1 2 2 2 3 0 0 0 1 2 2 3 = int( Y 1 , Z 1 ) Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 23 / 33

  38. Lengths 5 and 13 (cont.) B 5 + G 5 , 1 = 0 0 0 1 1 = int( W 0 , X 0 ) B 5 + G 5 , 2 = 0 1 2 2 3 = int( Y 0 , Z 0 ) B 13 + G 13 , 1 = 0 0 0 1 2 2 2 3 0 0 0 1 1 = int( W 1 , X 1 ) B 13 + G 13 , 2 = 0 1 2 2 2 3 0 0 0 1 2 2 3 = int( Y 1 , Z 1 ) Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 23 / 33

  39. Lengths 5 and 13 (cont.) B 5 + G 5 , 1 = 0 0 0 1 1 = int( W 0 , X 0 ) B 5 + G 5 , 2 = 0 1 2 2 3 = int( Y 0 , Z 0 ) B 13 + G 13 , 1 = 0 0 0 1 2 2 2 3 0 0 0 1 1 = int( W 1 , X 1 ) B 13 + G 13 , 2 = 0 1 2 2 2 3 0 0 0 1 2 2 3 = int( Y 1 , Z 1 ) ((0 1 2 3) m 0 1) := X m ((1 2 3 0) m 1 2) Z m := Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 23 / 33

  40. Lengths 5 and 13 (cont.) B 5 + G 5 , 1 = 0 0 0 1 1 = int( W 0 , X 0 ) B 5 + G 5 , 2 = 0 1 2 2 3 = int( Y 0 , Z 0 ) B 13 + G 13 , 1 = 0 0 0 1 2 2 2 3 0 0 0 1 1 = int( W 1 , X 1 ) B 13 + G 13 , 2 = 0 1 2 2 2 3 0 0 0 1 2 2 3 = int( Y 1 , Z 1 ) ((0 1 2 3) m 0 1) := X m ((1 2 3 0) m 1 2) Z m := ((0 0 2 2) m 0 0 1) := W m ((0 2 2 0) m 0 2 3) Y m := Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 23 / 33

  41. Lengths 5 and 13 (cont.) B 5 + G 5 , 1 = 0 0 0 1 1 = int( W 0 , X 0 ) B 5 + G 5 , 2 = 0 1 2 2 3 = int( Y 0 , Z 0 ) B 13 + G 13 , 1 = 0 0 0 1 2 2 2 3 0 0 0 1 1 = int( W 1 , X 1 ) B 13 + G 13 , 2 = 0 1 2 2 2 3 0 0 0 1 2 2 3 = int( Y 1 , Z 1 ) ((0 1 2 3) m 0 1) := X m ((1 2 3 0) m 1 2) Z m := ((0 0 2 2) m 0 0 1) := W m ((0 2 2 0) m 0 2 3) Y m := Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 23 / 33

  42. Binary Barker to quaternary Golay Theorem Let m ∈ N . Suppose int( A , B ) is a binary Barker sequence of length 8 m + 5 where A = ((0 0 0 2) m 0 0 0). Then the sequences := int( A + W m , B + X m ) , E F := int( A + Y m , B + Z m ) form a quaternary Golay pair of length 8 m + 5. Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 24 / 33

  43. Binary Barker to quaternary Golay Theorem Let m ∈ N . Suppose int( A , B ) is a binary Barker sequence of length 8 m + 5 where A = ((0 0 0 2) m 0 0 0). Then the sequences := int( A + W m , B + X m ) , E F := int( A + Y m , B + Z m ) form a quaternary Golay pair of length 8 m + 5. • Explains all length 5 and 13 quaternary Golay pairs! Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 24 / 33

  44. Binary Barker to quaternary Golay Theorem Let m ∈ N . Suppose int( A , B ) is a binary Barker sequence of length 8 m + 5 where A = ((0 0 0 2) m 0 0 0). Then the sequences := int( A + W m , B + X m ) , E F := int( A + Y m , B + Z m ) form a quaternary Golay pair of length 8 m + 5. • Explains all length 5 and 13 quaternary Golay pairs! • Unfortunately, this result does not give rise to any new quaternary Golay pairs. Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 24 / 33

  45. Ordered quaternary Golay pairs left to explain # pairs # pairs # pairs # pairs # pairs # pairs n n n left to left to left to explain explain explain 1 16 0 8 6656 0 15 0 0 2 64 0 9 0 0 16 106496 0 3 128 128 10 12288 0 17 0 0 4 512 0 11 512 512 18 24576 0 5 512 512 12 36864 0 19 0 0 6 2048 0 13 512 512 20 215040 0 7 0 0 14 0 0 21 0 0 • binary Barker to quaternary Golay theorem Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 25 / 33

  46. Ordered quaternary Golay pairs left to explain # pairs # pairs # pairs # pairs # pairs # pairs n n n left to left to left to explain explain explain 1 16 0 8 6656 0 15 0 0 2 64 0 9 0 0 16 106496 0 3 128 128 10 12288 0 17 0 0 4 512 0 11 512 512 18 24576 0 5 512 0 12 36864 0 19 0 0 6 2048 0 13 512 0 20 215040 0 7 0 0 14 0 0 21 0 0 Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 25 / 33

  47. Ordered quaternary Golay pairs left to explain # pairs # pairs # pairs # pairs # pairs # pairs n n n left to left to left to explain explain explain 1 16 0 8 6656 0 15 0 0 2 64 0 9 0 0 16 106496 0 3 128 128 10 12288 0 17 0 0 4 512 0 11 512 512 18 24576 0 5 512 0 12 36864 0 19 0 0 6 2048 0 13 512 0 20 215040 0 7 0 0 14 0 0 21 0 0 • ?? Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 25 / 33

  48. Constructing a Binary Barker Sequence from a Quaternary Golay Sequence Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 26 / 33

  49. Goal • We have seen that particular binary Barker quaternary Golay of ⇒ of length ≡ 5 (mod 8) length ≡ 5 (mod 8) Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 27 / 33

  50. Goal • We have seen that particular binary Barker quaternary Golay of ⇒ of length ≡ 5 (mod 8) length ≡ 5 (mod 8) • Our (optimistic) objective: particular binary Barker quaternary Golay of ⇐ of length ≡ 5 (mod 8) length ≡ 5 (mod 8) Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 27 / 33

  51. Goal • We have seen that particular binary Barker quaternary Golay of ⇒ of length ≡ 5 (mod 8) length ≡ 5 (mod 8) • Our (optimistic) objective: particular binary Barker quaternary Golay of ⇐ of length ≡ 5 (mod 8) length ≡ 5 (mod 8) • Since there are no binary Barker sequences of odd length greater than 13, this would prove that there are no more quaternary Golay sequences for these lengths. Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 27 / 33

  52. “Good” sequences G 5 , 1 = 0 0 0 3 1 G 5 , 2 = 0 1 2 0 3 Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 28 / 33

  53. “Good” sequences G 5 , 1 = 0 0 0 3 1 G 5 , 2 = 0 1 2 0 3 G 5 , 1 + G 5 , 2 = 0 1 2 3 0 Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 28 / 33

  54. “Good” sequences G 5 , 1 = 0 0 0 3 1 G 5 , 2 = 0 1 2 0 3 G 5 , 1 + G 5 , 2 = 0 1 2 3 0 G 13 , 1 = 0 0 0 1 2 0 0 3 0 2 0 3 1 G 13 , 2 = 0 1 2 2 2 1 2 0 0 3 2 0 3 Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 28 / 33

  55. “Good” sequences G 5 , 1 = 0 0 0 3 1 G 5 , 2 = 0 1 2 0 3 G 5 , 1 + G 5 , 2 = 0 1 2 3 0 G 13 , 1 = 0 0 0 1 2 0 0 3 0 2 0 3 1 G 13 , 2 = 0 1 2 2 2 1 2 0 0 3 2 0 3 G 13 , 1 + G 13 , 2 = 0 1 2 3 0 1 2 3 0 1 2 3 0 Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 28 / 33

  56. “Good sequences” (cont.) Lemma If A and B are sequences of length n and A + B = (0 1 2 3 ... ), then C B ( u ) = i − u · C A ( u ) for all integers 0 < u < n . Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 29 / 33

  57. “Good sequences” (cont.) Lemma If A and B are sequences of length n and A + B = (0 1 2 3 ... ), then C B ( u ) = i − u · C A ( u ) for all integers 0 < u < n . Call a sequence A of length n good if C A ( u ) = − i − u C A ( u ) for all integers 0 < u < n . Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 29 / 33

  58. “Good sequences” (cont.) Lemma If A and B are sequences of length n and A + B = (0 1 2 3 ... ), then C B ( u ) = i − u · C A ( u ) for all integers 0 < u < n . Call a sequence A of length n good if C A ( u ) = − i − u C A ( u ) for all integers 0 < u < n . • A good sequence is necessarily a Golay sequence. Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 29 / 33

  59. “Good sequences” (cont.) Lemma If A and B are sequences of length n and A + B = (0 1 2 3 ... ), then C B ( u ) = i − u · C A ( u ) for all integers 0 < u < n . Call a sequence A of length n good if C A ( u ) = − i − u C A ( u ) for all integers 0 < u < n . • A good sequence is necessarily a Golay sequence. • G 5 , 1 , G 5 , 2 , G 13 , 1 , and G 13 , 2 are all good. Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 29 / 33

  60. “Good sequences” (cont.) Lemma If A and B are sequences of length n and A + B = (0 1 2 3 ... ), then C B ( u ) = i − u · C A ( u ) for all integers 0 < u < n . Call a sequence A of length n good if C A ( u ) = − i − u C A ( u ) for all integers 0 < u < n . • A good sequence is necessarily a Golay sequence. • G 5 , 1 , G 5 , 2 , G 13 , 1 , and G 13 , 2 are all good. • Output sequences of Barker-to-Golay theorem are good. Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 29 / 33

  61. A partial Barker-to-Golay converse Theorem Let A = ( a 0 , ..., a n − 1 ) be a good sequence of length n = 8 m + 5. Assume that (1) a 2 u − 1 + a 2 u +1 ≡ 1 (mod 2), for all 1 ≤ 2 u − 1 ≤ n − 7 2 , and (2) a 4 u ≡ 0 (mod 2), for all 4 ≤ 4 u ≤ n − 5 2 . Then there exists a binary Barker sequence of length n , and so m ∈ { 0 , 1 } . Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 30 / 33

  62. A partial Barker-to-Golay converse Theorem Let A = ( a 0 , ..., a n − 1 ) be a good sequence of length n = 8 m + 5. Assume that (1) a 2 u − 1 + a 2 u +1 ≡ 1 (mod 2), for all 1 ≤ 2 u − 1 ≤ n − 7 2 , and (2) a 4 u ≡ 0 (mod 2), for all 4 ≤ 4 u ≤ n − 5 2 . Then there exists a binary Barker sequence of length n , and so m ∈ { 0 , 1 } . Proof: About 20 pages of lemmas. Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 30 / 33

  63. Summary and Open Problems Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 31 / 33

  64. Summary and open problems Summary of results: Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 32 / 33

  65. Summary and open problems Summary of results: • Classified and explained (almost) all ordered quaternary Golay pairs of length less than 22. Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 32 / 33

  66. Summary and open problems Summary of results: • Classified and explained (almost) all ordered quaternary Golay pairs of length less than 22. • Found a general construction of a quaternary Golay pair from a particular type of binary Barker sequence. Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 32 / 33

  67. Summary and open problems Summary of results: • Classified and explained (almost) all ordered quaternary Golay pairs of length less than 22. • Found a general construction of a quaternary Golay pair from a particular type of binary Barker sequence. • Established a partial converse to the Barker-to-Golay construction. Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 32 / 33

  68. Summary and open problems Summary of results: • Classified and explained (almost) all ordered quaternary Golay pairs of length less than 22. • Found a general construction of a quaternary Golay pair from a particular type of binary Barker sequence. • Established a partial converse to the Barker-to-Golay construction. Open problems: Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 32 / 33

  69. Summary and open problems Summary of results: • Classified and explained (almost) all ordered quaternary Golay pairs of length less than 22. • Found a general construction of a quaternary Golay pair from a particular type of binary Barker sequence. • Established a partial converse to the Barker-to-Golay construction. Open problems: • Explain the existence of the length 3 and 11 quaternary Golay pairs. Quaternary Golay Sequence Pairs : Richard Gibson (SFU) 32 / 33

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend