a new construction of qam golay complementary sequence
play

A New Construction of QAM Golay Complementary Sequence Pair 2020 - PowerPoint PPT Presentation

1. Introduction 2. Main Results 3. A Sketch of Proof A New Construction of QAM Golay Complementary Sequence Pair 2020 IEEE International Symposium on Information Theory Zilong Wang 1 , Erzhong Xue 1 , Guang Gong 2 1 State Key Laboratory of


  1. 1. Introduction 2. Main Results 3. A Sketch of Proof A New Construction of QAM Golay Complementary Sequence Pair 2020 IEEE International Symposium on Information Theory Zilong Wang 1 , Erzhong Xue 1 , Guang Gong 2 1 State Key Laboratory of Integrated Service Networks, Xidian University 2 Department of Electrical and Computer Engineering, University of Waterloo 21-26 June 2020 Los Angeles, California, USA Z. Wang E. Xue G. Gong QAM GCPs (ISIT2020)

  2. 1. Introduction 2. Main Results 3. A Sketch of Proof Contents 1. Introduction 1 1.1 GCS & GCP 1.2 QPSK GCPs 1.3 QAM GCPs 2. Main Results 2 2.1 Cases ++ 2.2 Main Construction 2.3 Enumeration 3. A Sketch of Proof 3 Viewpoint of Array Generating Function Para-unitary Matrix Z. Wang E. Xue G. Gong QAM GCPs (ISIT2020)

  3. 1. Introduction 1.1 GCS & GCP 2. Main Results 1.2 QPSK GCPs 3. A Sketch of Proof 1.3 QAM GCPs GCP & GCS Let F ( y ) = ( F (0) , F (1) , · · · , F ( L − 1)) be a complex valued sequence of length L . Suppose that F ( y ) = 0 if y < 0 and y ≥ L . The aperiodic auto-correlation of sequence F ( y ) at shift τ ( 1 − L ≤ τ ≤ L − 1 ) is defined by � C F ( τ ) = F ( y + τ ) · F ( y ) . y A pair of sequences { F ( y ) , G ( y ) } of length L is said to be a Golay complementary pair (GCP) if C F ( τ ) + C G ( τ ) = 0 ( ∀ τ � = 0) . And either sequence in a GCP is called a Golay complementary sequence (GCS). Z. Wang E. Xue G. Gong QAM GCPs (ISIT2020)

  4. 1. Introduction 1.1 GCS & GCP 2. Main Results 1.2 QPSK GCPs 3. A Sketch of Proof 1.3 QAM GCPs Example F 1 ( y ) = (1 , 1 , 1 , − 1 , 1 , 1 , − 1 , 1) and F 2 ( y ) = (1 , ξ, ξ, − 1 , 1 , − ξ, − ξ, − 1) . ( C F 1 ( τ )) 7 0 = (8 , − 1 , 0 , 3 , 0 , 1 , 0 , 1) ( C F 2 ( τ )) 7 0 = (8 , 1 , 0 , − 3 , 0 , − 1 , 0 , − 1) C F 1 ( τ ) + C F 2 ( τ ) = 0 ( ∀ τ � = 0) ⇒ F 1 ( y ) and F 2 ( y ) are GCP. 1 1 ξ = √− 1 is a fourth primitive root of unity. Z. Wang E. Xue G. Gong QAM GCPs (ISIT2020)

  5. 1. Introduction 1.1 GCS & GCP 2. Main Results 1.2 QPSK GCPs 3. A Sketch of Proof 1.3 QAM GCPs GBF Generalized Boolean Function For 0 ≤ y < L = 2 m , y can be uniquely written in a binary expansion as y = � m k =1 x k · 2 k − 1 where x k ∈ F 2 . Let x = ( x 1 , x 2 , · · · x m ) . Then a sequence F ( y ) of length 2 m over QPSK can be associated with a generalized Boolean function (GBF) f ( x ) over Z 4 by F ( y ) = ξ f ( x ) . Example f ( x 1 , x 2 , x 3 ) = 2( x 2 x 3 + x 1 x 3 ) + x 1 + x 2 Z 4 sequence: (0 , 1 , 1 , 2 , 0 , 3 , 3 , 2) . QPSK sequence: (1 , ξ, ξ, − 1 , 1 , − ξ, − ξ, − 1) . Z. Wang E. Xue G. Gong QAM GCPs (ISIT2020)

  6. 1. Introduction 1.1 GCS & GCP 2. Main Results 1.2 QPSK GCPs 3. A Sketch of Proof 1.3 QAM GCPs Standard GCPs [Davis and Jedwab, 1999] x π (1) x π (2) x π (3) x π ( m − 1) x π ( m ) . . . Figure: The Graph of Coset Representatives For GBF m − 1 � � m f ( x ) = 2 · x π ( k ) x π ( k +1) + c k · x k + c 0 , k =1 k =1 where c k ∈ Z 4 (0 ≤ k ≤ m ) , and c ′ ∈ Z 4 , the sequence pair associated with the GBFs over Z 4 � � f ( x ) , f ( x ) , or f ( x ) + 2 x π (1) + c ′ , f ( x ) + 2 x π ( m ) + c ′ , form a GCP over QPSK. Z. Wang E. Xue G. Gong QAM GCPs (ISIT2020)

  7. 1. Introduction 1.1 GCS & GCP 2. Main Results 1.2 QPSK GCPs 3. A Sketch of Proof 1.3 QAM GCPs QAM Sequence A sequence over 4 q -QAM can be viewed as the weighted sums of q sequences over QPSK, with weights in the ratio of 2 q − 1 : 2 q − 2 : · · · : 1 . Figure: eg: � v = 4 α + 2 β + γ Z. Wang E. Xue G. Gong QAM GCPs (ISIT2020)

  8. 1. Introduction 1.1 GCS & GCP 2. Main Results 1.2 QPSK GCPs 3. A Sketch of Proof 1.3 QAM GCPs V-GBF and QAM Sequence 2 to Z q A vectorial generalized Boolean function (V-GBF) is a function from F m 4 , denoted by � f ( x ) = ( f (0) ( x ) , f (1) ( x ) , · · · , f ( q − 1) ( x )) , where each component function f ( p ) ( x )(0 ≤ p < q ) is a GBF over Z 4 . A sequence over 4 q -QAM of length 2 m can be associated with a V-GBF � f ( x ) = ( f (0) ( x ) , f (1) ( x ) , · · · , f ( q − 1) ( x )) over Z 4 by q − 1 � 2 p · ξ f ( p ) ( x ) , F ( y ) = p =0 where y = � m k =1 x k · 2 k − 1 . Obviously, a sequence over QPSK can be viewed as a sequence over 4 q -QAM when q = 1 . Z. Wang E. Xue G. Gong QAM GCPs (ISIT2020)

  9. 1. Introduction 1.1 GCS & GCP 2. Main Results 1.2 QPSK GCPs 3. A Sketch of Proof 1.3 QAM GCPs QAM GCP Structure Denote the q -dimension vector (1 , 1 , · · · , 1) by � 1 . For the generalized constructions of cases I-III given by Li [Li, 2010] and the generalized constructions for cases IV-V given by Liu et al. [Liu et al., 2013], all the GCPs { F ( y ) , G ( y ) } of length 2 m over 4 q -QAM are associated with V-GBFs � � f ( x ) = � 1 · f ( x ) + � s ( x ) , g ( x ) = � � f ( x ) + � µ ( x ) , where f ( x ) is a standard GCS. � � s (0) ( x ) = 0 , s (1) ( x ) , · · · , s ( q − 1) ( x ) � s ( x ) = is called a offset V-GBF , � � µ (0) ( x ) , µ (1) ( x ) , · · · , µ ( q − 1) ( x ) µ ( x ) = � is called a pairing difference V-GBF . Z. Wang E. Xue G. Gong QAM GCPs (ISIT2020)

  10. 1. Introduction 1.1 GCS & GCP 2. Main Results 1.2 QPSK GCPs 3. A Sketch of Proof 1.3 QAM GCPs all the GCPs { F ( y ) , G ( y ) } of length 2 m over 4 q -QAM are associated with V-GBFs f ( x ) Z. Wang E. Xue G. Gong QAM GCPs (ISIT2020)

  11. 1. Introduction 1.1 GCS & GCP 2. Main Results 1.2 QPSK GCPs 3. A Sketch of Proof 1.3 QAM GCPs all the GCPs { F ( y ) , G ( y ) } of length 2 m over 4 q -QAM are associated with V-GBFs f ( x ) · � 1 = ( f (0) , f (0) , f (0) , · · · , f (0) ) , Z. Wang E. Xue G. Gong QAM GCPs (ISIT2020)

  12. 1. Introduction 1.1 GCS & GCP 2. Main Results 1.2 QPSK GCPs 3. A Sketch of Proof 1.3 QAM GCPs all the GCPs { F ( y ) , G ( y ) } of length 2 m over 4 q -QAM are associated with V-GBFs f ( x ) · � 1 = ( f (0) , f (0) , f (0) , · · · , f (0) ) , + ( s (0) , s (1) , s (2) , · · · , s ( q − 1) ) , � s ( x ) � = ( f (0) , f (1) , f (2) , · · · , f ( q − 1) ) , f ( x ) Z. Wang E. Xue G. Gong QAM GCPs (ISIT2020)

  13. 1. Introduction 1.1 GCS & GCP 2. Main Results 1.2 QPSK GCPs 3. A Sketch of Proof 1.3 QAM GCPs all the GCPs { F ( y ) , G ( y ) } of length 2 m over 4 q -QAM are associated with V-GBFs f ( x ) · � 1 = ( f (0) , f (0) , f (0) , · · · , f (0) ) , + ( s (0) , s (1) , s (2) , · · · , s ( q − 1) ) , � s ( x ) � = ( f (0) , f (1) , f (2) , · · · , f ( q − 1) ) , f ( x ) + ( µ (0) , µ (1) , µ (2) , · · · , µ ( q − 1) ) , � µ ( x ) = ( g (0) , g (1) , g (2) , · · · , g ( q − 1) ) , � g ( x ) Z. Wang E. Xue G. Gong QAM GCPs (ISIT2020)

  14. 1. Introduction 1.1 GCS & GCP 2. Main Results 1.2 QPSK GCPs 3. A Sketch of Proof 1.3 QAM GCPs all the GCPs { F ( y ) , G ( y ) } of length 2 m over 4 q -QAM are associated with V-GBFs f ( x ) · � 1 = ( f (0) , f (0) , f (0) , · · · , f (0) ) , + ( s (0) , s (1) , s (2) , · · · , s ( q − 1) ) , � s ( x ) � = ( f (0) , f (1) , f (2) , · · · , f ( q − 1) ) , f ( x ) + ( µ (0) , µ (1) , µ (2) , · · · , µ ( q − 1) ) , � µ ( x ) = ( g (0) , g (1) , g (2) , · · · , g ( q − 1) ) , � g ( x ) where f ( x ) is a standard GCS. � � s (0) ( x ) = 0 , s (1) ( x ) , · · · , s ( q − 1) ( x ) � s ( x ) = is called a offset V-GBF, � � µ (0) ( x ) , µ (1) ( x ) , · · · , µ ( q − 1) ( x ) � µ ( x ) = is called a pairing difference V-GBF. Z. Wang E. Xue G. Gong QAM GCPs (ISIT2020)

  15. 1. Introduction 1.1 GCS & GCP 2. Main Results 1.2 QPSK GCPs 3. A Sketch of Proof 1.3 QAM GCPs The generalized cases I-III [Li, 2010] For d ( p ) ∈ Z 4 ( 1 ≤ p ≤ q − 1 , 0 ≤ i ≤ 2 ), and 2 d ( p ) + d ( p ) + d ( p ) = 0 . i 0 1 2 (1) The generalized case I: s ( p ) ( x ) = d ( p ) + d ( p ) µ ( x ) = 2 x π ( m ) · � 1 x π (1) , 1 ≤ p ≤ q − 1 , � 1; 0 (2) The generalized case II: s ( p ) ( x ) = d ( p ) + d ( p ) µ ( x ) = 2 x π (1) · � 1 x π ( m ) , 1 ≤ p ≤ q − 1 , � 1; 0 (3) The generalized case III: s ( p ) ( x ) = d ( p ) + d ( p ) 1 x π ( ω ) + d ( p ) 2 x π ( ω +1) , 1 ≤ p ≤ q − 1 , 0 µ ( x ) = 2 x π (1) · � 1 or 2 x π ( m ) · � with � 1 , 1 ≤ ω ≤ m − 1 . Z. Wang E. Xue G. Gong QAM GCPs (ISIT2020)

  16. 1. Introduction 2.1 Cases ++ 2. Main Results 2.2 Main Construction 3. A Sketch of Proof 2.3 Enumeration Section 2. Main Results 2.1 Cases ++ New framework Cases I-III in short Case for q = q 0 × q 1 2.2 Main Construction Case for q = q 0 · q 1 · · · q m � s ( x ) , � µ A ( x ) and � µ B ( x ) 2.3 Enumeration Enumeration for q = 6 Conclusion Z. Wang E. Xue G. Gong QAM GCPs (ISIT2020)

  17. � � � � � � 1. Introduction 2.1 Cases ++ 2. Main Results 2.2 Main Construction 3. A Sketch of Proof 2.3 Enumeration New Structure � f ( x ) µ A ( x ) � � � � f 0 , 0 ( x ) f 0 , 1 ( x )  f ( x ) = � �  1 · f ( x ) + � s ( x ) ,   � µ B ( x ) µ B ( x ) � g ( x ) = � � f ( x ) + � µ A ( x ) ,    or � f ( x ) + � µ B ( x ) , � � f 1 , 0 ( x ) f 1 , 1 ( x ) � µ A ( x ) � g ( x ) Figure: A Diagram of the Relationship Z. Wang E. Xue G. Gong QAM GCPs (ISIT2020)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend