combinatorics of exclusion processes with open boundaries
play

Combinatorics of exclusion processes with open boundaries Sylvie - PowerPoint PPT Presentation

Combinatorics of exclusion processes with open boundaries Sylvie Corteel (CNRS Paris 7) GGI, Florence, May 19th 2015 Koornwinder moments and the two species ASEP Sylvie Corteel (CNRS Paris 7) Lauren Williams (Berkeley) Triangular


  1. Combinatorics of exclusion processes with open boundaries Sylvie Corteel (CNRS Paris 7) GGI, Florence, May 19th 2015

  2. Koornwinder moments and the two species ASEP Sylvie Corteel (CNRS Paris 7) Lauren Williams (Berkeley) Triangular staircase tableaux Sylvie Corteel, Olya Mandelshtam (Berkeley) and Lauren Williams (Berkeley) . . .

  3. Binary trees, Paths and tableaux

  4. Binary trees, Paths and tableaux

  5. Binary trees, Paths and tableaux

  6. Binary trees, Paths and tableaux

  7. Binary trees, Paths and tableaux

  8. Binary trees, Paths and tableaux

  9. Binary trees, Paths and tableaux ⌧ 2 { � , •} N B ( ⌧ ) number of trees of canopy ⌧ M ( ⌧ ) number of paths of shape ⌧ C ( ⌧ ) number of tableaux of shape ⌧

  10. Binary trees, Paths and tableaux ⌧ 2 { � , •} N B ( ⌧ ) number of trees of canopy ⌧ M ( ⌧ ) number of paths of shape ⌧ C ( ⌧ ) number of tableaux of shape ⌧ B ( τ ) = M ( τ ) = C ( τ ) P ⌧ C ( ⌧ ) = C n +1 Catalan numbers

  11. Binary trees, Paths and tableaux ⌧ 2 { � , •} N B ( ⌧ ) number of trees of canopy ⌧ M ( ⌧ ) number of paths of shape ⌧ C ( ⌧ ) number of tableaux of shape ⌧ B ( τ ) = M ( τ ) = C ( τ ) P ⌧ C ( ⌧ ) = C n +1 Catalan numbers

  12. Binary trees, Paths and tableaux ⌧ 2 { � , •} N B ( ⌧ ) number of trees of canopy ⌧ M ( ⌧ ) number of paths of shape ⌧ C ( ⌧ ) number of tableaux of shape ⌧ B ( τ ) = M ( τ ) = C ( τ ) P ⌧ C ( ⌧ ) = C n +1 Catalan numbers

  13. Binary trees, Paths and tableaux ⌧ 2 { � , •} N B ( ⌧ ) number of trees of canopy ⌧ M ( ⌧ ) number of paths of shape ⌧ C ( ⌧ ) number of tableaux of shape ⌧ B ( τ ) = M ( τ ) = C ( τ ) P ⌧ C ( ⌧ ) = C n +1 Catalan numbers

  14. Binary trees, Paths and tableaux ⌧ 2 { � , •} N B ( ⌧ ) number of trees of canopy ⌧ M ( ⌧ ) number of paths of shape ⌧ B ( ⌧ ) /C n +1 is the probability to be in state ⌧ of the TASEP with open boundaries and N sites C ( ⌧ ) number of tableaux of shape ⌧ B ( τ ) = M ( τ ) = C ( τ ) P ⌧ C ( ⌧ ) = C n +1 Catalan numbers

  15. Binary trees, Paths and tableaux ⌧ 2 { � , •} N B ( ⌧ ) number of trees of canopy ⌧ M ( ⌧ ) number of paths of shape ⌧ B ( ⌧ ) /C n +1 is the probability to be in state ⌧ of the TASEP with open boundaries and N sites C ( ⌧ ) number of tableaux of shape ⌧ B ( τ ) = M ( τ ) = C ( τ ) P ⌧ C ( ⌧ ) = C n +1 Catalan numbers

  16. Matrix Ansatz [Derrida et al 93] Matrices D and E , and vectors h W | and | V i • h W | E = h W | Z N = h W | ( D + E ) N | V i . • D | V i = | V i • DE = D + E P ( τ ) = h W | Q N i =1 [ ⌧ i D +(1 � ⌧ i ) E ] | V i Steady state ⌧ 2 { � , •} = { 0 , 1 } N . Z N

  17. Matrix Ansatz [Derrida et al 93] Matrices D and E , and vectors h W | and | V i • h W | E = h W | Z N = h W | ( D + E ) N | V i . • D | V i = | V i • DE = D + E P ( τ ) = h W | Q N i =1 [ ⌧ i D +(1 � ⌧ i ) E ] | V i Steady state ⌧ 2 { � , •} = { 0 , 1 } N . Z N h W | = (1 , 0 , . . . ) , | V i = (1 , 0 , . . . ) T Solution: 0 1 0 1 1 1 0 0 . . . 1 0 0 0 . . . 0 1 1 0 . . . 1 1 0 0 . . . B C B C B C B C 0 0 1 1 . . . 0 1 1 0 . . . B C B C D = E = B C B C 0 0 0 1 . . . 0 0 1 1 . . . B C B C @ A @ A . . . . . . . . . . . . Motzkin paths [Zeilberger, Duchi and Schae ff er, Brak and Essam]

  18. Matrix Ansatz [Derrida et al 93] Matrices D and E , and vectors h W | and | V i • h W | E = h W | Z N = h W | ( D + E ) N | V i . • D | V i = | V i • DE = D + E P ( τ ) = h W | Q N i =1 [ ⌧ i D +(1 � ⌧ i ) E ] | V i Steady state ⌧ 2 { � , •} = { 0 , 1 } N . Z N h W | = (1 , 0 , . . . ) , | V i = (1 , 1 , . . . ) T Solution: 0 1 0 1 0 1 0 0 . . . 1 0 0 0 . . . 0 0 1 0 . . . 1 1 0 0 . . . B C B C B C B C 0 0 0 1 . . . 1 1 1 0 . . . B C B C D = E = B C B C 0 0 0 0 . . . 1 1 1 1 . . . B C B C @ A @ A . . . . . . . . . . . . Lukasiewicz paths, Catalan tableaux

  19. Asymmetric exclusion process with 5 parameters

  20. Asymmetric exclusion process with 5 parameters γ α β δ q γ δ β α

  21. Asymmetric exclusion process with 5 parameters γ α β δ q γ δ β α Matrix Ansatz • h W | ( ↵ E � � D ) = h W | • ( � D � � E ) | V i = | V i • DE = qED + D + E

  22. Asymmetric exclusion process with 5 parameters γ α β δ q γ δ β α Matrix Ansatz • h W | ( ↵ E � � D ) = h W | � = � = 0 • ( � D � � E ) | V i = | V i • Trees ) tree like tableaux • DE = qED + D + E • Paths ) moments of AlSalam-Chihara Polynomials • Tableaux ) Permutation tableaux, Alternative tableaux

  23. Asymmetric exclusion process with 5 parameters γ α β δ q γ δ β α Matrix Ansatz • h W | ( ↵ E � � D ) = h W | � = � = 0 • ( � D � � E ) | V i = | V i • Trees ) tree like tableaux • DE = qED + D + E • Paths ) moments of AlSalam-Chihara Polynomials • Tableaux ) Permutation tableaux, Alternative tableaux [Aval, Boussicault, C. Josuat-Verg` es, Nadeau, Viennot, Williams. . . ]

  24. Asymmetric exclusion process with 5 parameters γ α β δ q γ δ β α General model • Moments of Askey Wilson polynomials [Uchiyama, Sasamoto, Wadati 04] • Staircase tableaux [C., Williams 10]

  25. Askey Wilson polynomials P n +1 ( x ) = ( x � b n ) P n ( x ) � � n P n � 1 ( x ) b n = 1 / 2( a + 1 /a � A n � C n ) � n = A n � 1 C n / 4 A n = (1 � abq n )(1 � acq n )(1 � adq n )(1 � abcdq n − 1 ) a (1 � abcdq 2 n )(1 � abcdq 2 n − 1 ) C n = (1 � abq n − 1 )(1 � bcq n − 1 )(1 � bdq n − 1 )(1 � q n ) symmetric in a, b, c, d a (1 � abcdq 2 n − 2 )(1 � abcdq 2 n − 1 )

  26. Askey Wilson polynomials P n +1 ( x ) = ( x � b n ) P n ( x ) � � n P n � 1 ( x ) b n = 1 / 2( a + 1 /a � A n � C n ) � n = A n � 1 C n / 4 A n = (1 � abq n )(1 � acq n )(1 � adq n )(1 � abcdq n − 1 ) a (1 � abcdq 2 n )(1 � abcdq 2 n − 1 ) C n = (1 � abq n − 1 )(1 � bcq n − 1 )(1 � bdq n − 1 )(1 � q n ) symmetric in a, b, c, d a (1 � abcdq 2 n − 2 )(1 � abcdq 2 n − 1 ) orthogonal ⇣ ⌘ ⇣ ⌘ ⇣ ⌘ H z + z − 1 z + z − 1 z + z − 1 dz 4 ⇡ iz w P m P n = h n δ mn , C 2 2 2 ( z 2 ,z − 2 ; q ) ∞ ( az,a/z,bz,b/z,cz,c/z,dz,d/z ; q ) ∞ , x = ( z + z � 1 ) / 2 w ( x ) = h n = (1 � q n − 1 abcd )( q,ab,ac,ad,bc,bd,cd ; q ) n (1 � q 2 n − 1 abcd )( abcd ; q ) n

  27. Askey Wilson polynomials P n +1 ( x ) = ( x � b n ) P n ( x ) � � n P n � 1 ( x ) b n = 1 / 2( a + 1 /a � A n � C n ) � n = A n � 1 C n / 4 A n = (1 � abq n )(1 � acq n )(1 � adq n )(1 � abcdq n − 1 ) a (1 � abcdq 2 n )(1 � abcdq 2 n − 1 ) C n = (1 � abq n − 1 )(1 � bcq n − 1 )(1 � bdq n − 1 )(1 � q n ) symmetric in a, b, c, d a (1 � abcdq 2 n − 2 )(1 � abcdq 2 n − 1 ) orthogonal ⇣ ⌘ ⇣ ⌘ ⇣ ⌘ H z + z − 1 z + z − 1 z + z − 1 dz 4 ⇡ iz w P m P n = h n δ mn , C 2 2 2 ( z 2 ,z − 2 ; q ) ∞ ( az,a/z,bz,b/z,cz,c/z,dz,d/z ; q ) ∞ , x = ( z + z � 1 ) / 2 w ( x ) = h n = (1 � q n − 1 abcd )( q,ab,ac,ad,bc,bd,cd ; q ) n (1 � q 2 n − 1 abcd )( abcd ; q ) n ⇣ ⌘ ⇣ ⌘ N Moments H z + z − 1 z + z − 1 dz µ AW = 4 ⇡ iz w N C 2 2

  28. Combinatorics of moments [Flajolet, Viennot 80s] P n +1 ( x ) = ( x � b n ) P n ( x ) � � n P n � 1 ( x ) b 2 � 2 � 2 b 1 � 1 � 1 (0 , 0) ( N, 0)

  29. Combinatorics of moments [Flajolet, Viennot 80s] P n +1 ( x ) = ( x � b n ) P n ( x ) � � n P n � 1 ( x ) b 2 � 2 � 2 b 1 µ N = P � 1 � 1 P W ( p ) (0 , 0) ( N, 0) W ( P ) = b 1 b 2 � 1 � 2 2

  30. Combinatorics of moments [Flajolet, Viennot 80s] P n +1 ( x ) = ( x � b n ) P n ( x ) � � n P n � 1 ( x ) b 2 � 2 � 2 b 1 µ N = P � 1 � 1 P W ( p ) (0 , 0) ( N, 0) W ( P ) = b 1 b 2 � 1 � 2 2 � 2 ( N, r ) b 1 b 1 � 1 b 0 (0 , 0) ⇣ ⌘ ⇣ ⌘ ⇣ ⌘ N H z + z − 1 z + z − 1 z + z − 1 dz µ N,r = 4 ⇡ iz w P r C 2 2 2

  31. Solution of the 5 parameter model [USW 04] 0 1 d \ d ] 0 · · · 0 0 d \ d ] d [ B C 0 1 1 B C d = ... B C d \ d [ 0 B C 1 2 @ A . ... ... . . q n bd d [ e [ 1 d ] n = 1 e ] n = � q n ac n = � n = (1 � q n ac )(1 � q n bd ) � n (1 � q n ac )(1 � q n bd ) � n h W | = (1 , 0 , . . . ) , | V i = (1 , 0 , . . . ) T

  32. Solution of the 5 parameter model [USW 04] 0 1 d \ d ] 0 · · · 0 0 d \ d ] d [ B C 0 1 1 B C d = ... B C d \ d [ 0 B C 1 2 @ A . ... ... . d \ n + e \ n = b n . q n bd d [ e [ 1 d ] n = 1 e ] n = � q n ac n = � n = (1 � q n ac )(1 � q n bd ) � n (1 � q n ac )(1 � q n bd ) � n h W | = (1 , 0 , . . . ) , | V i = (1 , 0 , . . . ) T µ AW = h W | ( d + e ) N | V i N

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend