combinatorics of complete non ambiguous trees
play

Combinatorics of Complete Non-Ambiguous Trees Thomas Selig joint - PowerPoint PPT Presentation

Combinatorics of Complete Non-Ambiguous Trees Thomas Selig joint work with Mark Dukes, Jason P. Smith and Einar Steingr msson ICE-TCS Seminar, University of Reykjavik 20 November, 2018 Thomas Selig Combinatorics of CNATs Permutations


  1. Combinatorics of Complete Non-Ambiguous Trees Thomas Selig joint work with Mark Dukes, Jason P. Smith and Einar Steingr´ ımsson ICE-TCS Seminar, University of Reykjavik 20 November, 2018 Thomas Selig Combinatorics of CNATs

  2. Permutations Permutation = Bijection { 1 , . . . , n } → { 1 , . . . , n } . Thomas Selig Combinatorics of CNATs

  3. Permutations Permutation = Bijection { 1 , . . . , n } → { 1 , . . . , n } . One-line notation π = 561243 ∈ S 6 . Thomas Selig Combinatorics of CNATs

  4. Permutations Permutation = Bijection { 1 , . . . , n } → { 1 , . . . , n } . One-line notation π = 561243 ∈ S 6 . Diagram representation: 6 5 4 3 2 1 1 2 3 4 5 6 Thomas Selig Combinatorics of CNATs

  5. Inversions Inversions are pairs ( π i , π j ) s.t. i < j and π i > π j . Thomas Selig Combinatorics of CNATs

  6. Inversions Inversions are pairs ( π i , π j ) s.t. i < j and π i > π j . π = 561243 Inv ( π ) = { (5 , 1) , (5 , 2) , (5 , 4) , (5 , 3) , (6 , 1) , (6 , 2) , (6 , 4) , (6 , 3) , (4 , 3) } . Thomas Selig Combinatorics of CNATs

  7. Inversions Inversions are pairs ( π i , π j ) s.t. i < j and π i > π j . π = 561243 Inv ( π ) = { (5 , 1) , (5 , 2) , (5 , 4) , (5 , 3) , (6 , 1) , (6 , 2) , (6 , 4) , (6 , 3) , (4 , 3) } . 6 5 4 3 2 1 1 2 3 4 5 6

  8. Inversions Inversions are pairs ( π i , π j ) s.t. i < j and π i > π j . π = 561243 Inv ( π ) = { (5 , 1) , (5 , 2) , (5 , 4) , (5 , 3) , (6 , 1) , (6 , 2) , (6 , 4) , (6 , 3) , (4 , 3) } . 6 5 4 3 2 1 1 2 3 4 5 6 Thomas Selig Combinatorics of CNATs

  9. Permutation graphs Permutation graph G π for π ∈ S n : Vertex set [ n ] := { 1 , . . . , n } ; Edge set Inv ( π ). Thomas Selig Combinatorics of CNATs

  10. Permutation graphs Permutation graph G π for π ∈ S n : Vertex set [ n ] := { 1 , . . . , n } ; Edge set Inv ( π ). 6 5 4 3 2 1 1 2 3 4 5 6

  11. Permutation graphs Permutation graph G π for π ∈ S n : Vertex set [ n ] := { 1 , . . . , n } ; Edge set Inv ( π ). 6 5 4 3 2 1 1 2 3 4 5 6 Thomas Selig Combinatorics of CNATs

  12. Example π = 561243 ∈ S 6 . 6 3 4 1 2 5 Thomas Selig Combinatorics of CNATs

  13. Connectivity π ∈ S n is decomposable if ∃ k < n , { π 1 , . . . , π k } = { 1 , . . . , k } , indecomposable otherwise. Thomas Selig Combinatorics of CNATs

  14. Connectivity π ∈ S n is decomposable if ∃ k < n , { π 1 , . . . , π k } = { 1 , . . . , k } , indecomposable otherwise. Theorem A permutation graph G π is connected if, and only if, π is indecomposable. Thomas Selig Combinatorics of CNATs

  15. Non-ambiguous trees Definition (Aval, Boussicault, Bouvel, Silimbani 2014) A non-ambiguous tree (NAT) is a filling of a rectangular tableau m × n such that: 1 Every row and every column has a dot; 2 Except for the bottom-left cell, every dot has either a dot below it in its column or to its left in its row, but not both. Thomas Selig Combinatorics of CNATs

  16. Underlying binary tree

  17. Underlying binary tree Thomas Selig Combinatorics of CNATs

  18. Underlying binary tree NAT is complete if binary tree is complete, i.e. every dot has either a dot above it and to its right ( internal dot), or neither of these ( leaf dot). Thomas Selig Combinatorics of CNATs

  19. Underlying binary tree NAT is complete if binary tree is complete, i.e. every dot has either a dot above it and to its right ( internal dot), or neither of these ( leaf dot). Above NAT is incomplete. Thomas Selig Combinatorics of CNATs

  20. History NATs introduced as a special case of tree-like tableaux. Links to PASEP, other types of tableaux. NATs counted by certain permutations. Thomas Selig Combinatorics of CNATs

  21. History NATs introduced as a special case of tree-like tableaux. Links to PASEP, other types of tableaux. NATs counted by certain permutations. CNATs a natural subset of NATs. Count them: 1 , 1 , 4 , 33 , 456 , 9460 , . . . . Sequence A002190 in OEIS: e.g.f. = − log(BesselJ(0 , 2 ∗ √ x )) (first combinatorial interpretation of sequence). Thomas Selig Combinatorics of CNATs

  22. History NATs introduced as a special case of tree-like tableaux. Links to PASEP, other types of tableaux. NATs counted by certain permutations. CNATs a natural subset of NATs. Count them: 1 , 1 , 4 , 33 , 456 , 9460 , . . . . Sequence A002190 in OEIS: e.g.f. = − log(BesselJ(0 , 2 ∗ √ x )) (first combinatorial interpretation of sequence). This talk: refine this enumeration. Thomas Selig Combinatorics of CNATs

  23. Properties of CNATs

  24. Properties of CNATs

  25. Properties of CNATs Permutation? Thomas Selig Combinatorics of CNATs

  26. Properties of CNATs Lemma (Dukes, S., Smith, Steingr´ ımsson 18) Let N be a CNAT. Then | rows( N ) | = | columns( N ) | . Moreover, the leaf dots of N form the diagram of an indecomposable permutation, denoted Perm( N ). Thomas Selig Combinatorics of CNATs

  27. Counting CNATs Definition The Tutte polynomial of a connected graph G = ( V , E ) is defined by � ( x − 1) cc ( S ) − 1 ( y − 1) cc ( S )+ | S |−| V | , T G ( x , y ) := S ⊆ E where cc ( S ) = number of connected components of ( V , S ). Thomas Selig Combinatorics of CNATs

  28. Counting CNATs Definition The Tutte polynomial of a connected graph G = ( V , E ) is defined by � ( x − 1) cc ( S ) − 1 ( y − 1) cc ( S )+ | S |−| V | , T G ( x , y ) := S ⊆ E where cc ( S ) = number of connected components of ( V , S ). Theorem (Dukes, S., Smith, Steingr´ ımsson 18) Permutation π indecomposable. Then � � � { N ∈ CNAT; Perm( N ) = π } � = T G π (1 , 0) . � � Thomas Selig Combinatorics of CNATs

  29. External activity Definition G = ( V , E ) a graph, T ⊆ E a spanning tree of G , < E a total order on E . An edge e / ∈ T is externally active if it is minimal for < E in the unique cycle of T ∪ { e } . External activity of T = ext( T ) = number of externally active edges. Thomas Selig Combinatorics of CNATs

  30. External activity Definition G = ( V , E ) a graph, T ⊆ E a spanning tree of G , < E a total order on E . An edge e / ∈ T is externally active if it is minimal for < E in the unique cycle of T ∪ { e } . External activity of T = ext( T ) = number of externally active edges. Proposition For a connected graph G = ( V , E ) and a total order < E , we have � � T G (1 , 0) = � { T spanning tree of G ; ext( T ) = 0 } � . Thomas Selig Combinatorics of CNATs

  31. Edges of permutation graph 6 c ′ 5 c 4 3 2 1 1 2 3 4 5 6 Define f ( i , j ) = ( i , π j ). Thomas Selig Combinatorics of CNATs

  32. Edges of permutation graph 6 c ′ 5 c 4 3 2 1 1 2 3 4 5 6 Define f ( i , j ) = ( i , π j ). f ( c ) = (4 , 6), f ( c ′ ) = (5 , 2). Thomas Selig Combinatorics of CNATs

  33. Edges of permutation graph 6 c ′ 5 c 4 3 2 1 1 2 3 4 5 6 Define f ( i , j ) = ( i , π j ). f ( c ) = (4 , 6), f ( c ′ ) = (5 , 2). Lemma: c has a leaf dot above and a leaf dot to its right iff f ( c ) ∈ E ( G π ). Thomas Selig Combinatorics of CNATs

  34. Proof of theorem 6 6 5 4 3 4 1 2 3 2 1 5 1 2 3 4 5 6

  35. Proof of theorem 6 6 6 5 4 ˆ f 3 3 4 4 1 1 2 2 3 2 1 5 5 1 2 3 4 5 6 Thomas Selig Combinatorics of CNATs

  36. Proof of theorem 6 6 6 5 4 ˆ f 3 3 4 4 1 1 2 2 3 2 1 5 5 1 2 3 4 5 6 Theorem (Dukes, S., Smith, Steingr´ ımsson 18) Order edges of G π lexicographically according to corresponding cells in tableau. Then ˆ f : { N ∈ CNAT; Perm( N ) = π } → { T ∈ ST ( G π ) ; ext( T ) = 0 } is a bijection. Thomas Selig Combinatorics of CNATs

  37. Open questions Other combinatorial interpretations of T G (1 , 0) (acyclic orientations, Abelian sandpile model). Other interpretations of CNATs? Thomas Selig Combinatorics of CNATs

  38. Open questions Other combinatorial interpretations of T G (1 , 0) (acyclic orientations, Abelian sandpile model). Other interpretations of CNATs? All spanning trees: a “multi-rooted” generalisation of CNATs? Thomas Selig Combinatorics of CNATs

  39. The decreasing case A CNAT N is decreasing if Perm( N ) = ( n + 1) n · · · 1. Thomas Selig Combinatorics of CNATs

  40. The decreasing case A CNAT N is decreasing if Perm( N ) = ( n + 1) n · · · 1. 1 2 3 4 5 6 Thomas Selig Combinatorics of CNATs

  41. The decreasing case A CNAT N is decreasing if Perm( N ) = ( n + 1) n · · · 1. 1 2 3 4 5 6 G = K n +1 and T G (1 , 0) = n !. Thomas Selig Combinatorics of CNATs

  42. The decreasing case A CNAT N is decreasing if Perm( N ) = ( n + 1) n · · · 1. 1 2 3 4 5 6 G = K n +1 and T G (1 , 0) = n !. Bijective proof? Thomas Selig Combinatorics of CNATs

  43. Bottom row decomposition = + 1 2 3 4 5 6 7 1 2 5 7 3 4 6 7 Thomas Selig Combinatorics of CNATs

  44. The bijection Defined recursively: Thomas Selig Combinatorics of CNATs

  45. The bijection Defined recursively: Ψ( ) = Ψ( ) · Ψ( ) 1 2 3 4 5 6 7 3 4 6 7 1 2 5 7 Thomas Selig Combinatorics of CNATs

  46. The bijection Defined recursively: Ψ( ) = Ψ( ) · Ψ( ) 1 2 3 4 5 6 7 3 4 6 7 1 2 5 7 Ψ( ) = 3 · Ψ( ) 4 6 7 3 4 6 7 Thomas Selig Combinatorics of CNATs

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend