clebsch gordan coefficients and principal series
play

Clebsch-Gordan Coefficients and Principal Series Representations - PowerPoint PPT Presentation

Clebsch-Gordan Coefficients and Principal Series Representations Clebsch-Gordan Coefficients and Principal Series Representations Zhuohui Zhang, Rutgers University Workshop on Automorphic Forms, Representations of Lie Groups and Several Complex


  1. � � � � � � � � � � � Clebsch-Gordan Coefficients and Principal Series Representations Compact picture of Principal Series SL (2 , R ) Example from Textbooks(Bargmann, 1940’s) ◮ λ > 0: D + | λ | ⊕ D − | λ | ֒ → I ( χ δ,λ ) ։ W | λ | U + U + � U + � U + U + � e − 2 i k θ e − 2 i θ e 2 i θ e 2 i k θ � . . . 1 � . . . U − U − U − U − U − ◮ λ < 0: W | λ | ֒ → I ( χ δ,λ ) ։ D + | λ | ⊕ D − | λ | U + U + � U + U + U + � � 1 e − 2 i k θ e − 2 i θ e 2 i θ e 2 i k θ � . . . . . . U − U − U − U − U −

  2. � � � � � � � � � � � Clebsch-Gordan Coefficients and Principal Series Representations Compact picture of Principal Series SL (2 , R ) Example from Textbooks(Bargmann, 1940’s) ◮ λ > 0: D + | λ | ⊕ D − | λ | ֒ → I ( χ δ,λ ) ։ W | λ | U + U + � U + � U + U + � e − 2 i k θ e − 2 i θ e 2 i θ e 2 i k θ � . . . 1 � . . . U − U − U − U − U − ◮ λ < 0: W | λ | ֒ → I ( χ δ,λ ) ։ D + | λ | ⊕ D − | λ | U + U + � U + U + U + � � 1 e − 2 i k θ e − 2 i θ e 2 i θ e 2 i k θ � . . . . . . U − U − U − U − U − 0 ⊕ D − ◮ I ( χ − 1 , 0 ) = D + (limit of discrete series) 0

  3. � � � � � � � � � � � � � � � Clebsch-Gordan Coefficients and Principal Series Representations Compact picture of Principal Series SL (2 , R ) Example from Textbooks(Bargmann, 1940’s) ◮ λ > 0: D + | λ | ⊕ D − | λ | ֒ → I ( χ δ,λ ) ։ W | λ | U + U + � U + � U + U + � e − 2 i k θ e − 2 i θ e 2 i θ e 2 i k θ � . . . 1 � . . . U − U − U − U − U − ◮ λ < 0: W | λ | ֒ → I ( χ δ,λ ) ։ D + | λ | ⊕ D − | λ | U + U + � U + U + U + � � 1 e − 2 i k θ e − 2 i θ e 2 i θ e 2 i k θ � . . . . . . U − U − U − U − U − 0 ⊕ D − ◮ I ( χ − 1 , 0 ) = D + (limit of discrete series) 0 U + U + � U + U + � e − i k θ e − i θ e i θ e i k θ � . . . � . . . U − U − U − U −

  4. Clebsch-Gordan Coefficients and Principal Series Representations Preparation: SU(2) The Compact Group U (2) ◮ The Lie algebra u (2) is generated by Pauli matrices γ 0 = i � 1 0 , γ 1 = i � 0 1 , γ 2 = i � 0 − i , γ 3 = i � 1 0 � � � � 0 1 1 0 0 − 1 i 0 2 2 2 2 The matrices γ 1 , γ 2 , γ 3 can be interpreted as rotations in R 3 around x , y , z axis respectively.

  5. Clebsch-Gordan Coefficients and Principal Series Representations Preparation: SU(2) The Compact Group U (2) ◮ The Lie algebra u (2) is generated by Pauli matrices γ 0 = i � 1 0 , γ 1 = i � 0 1 , γ 2 = i � 0 − i , γ 3 = i � 1 0 � � � � 0 1 1 0 0 − 1 i 0 2 2 2 2 The matrices γ 1 , γ 2 , γ 3 can be interpreted as rotations in R 3 around x , y , z axis respectively. ◮ Euler angles on U (2): a general element in U (2) can be expressed as e ζ γ 0 e φ γ 3 e θ γ 2 e ψ γ 3

  6. Clebsch-Gordan Coefficients and Principal Series Representations Preparation: SU(2) The Compact Group U (2) ◮ Representations of U (2): π ( j , n ) = Pol 2 j ( C 2 ) ⊗ det j + n . The action on f ∈ Pol 2 j ( C 2 ) is given by f ( z ) �→ f ( g − 1 z ).

  7. Clebsch-Gordan Coefficients and Principal Series Representations Preparation: SU(2) The Compact Group U (2) ◮ Representations of U (2): π ( j , n ) = Pol 2 j ( C 2 ) ⊗ det j + n . The action on f ∈ Pol 2 j ( C 2 ) is given by f ( z ) �→ f ( g − 1 z ). ◮ Highest weight ( j , n ), j , n half integers, j ≥ 0; weight vectors z j − m z j + m v ( j , n ) √ = ( j − m )!( j + m )! with − j ≤ m ≤ j . 1 2 m

  8. Clebsch-Gordan Coefficients and Principal Series Representations Preparation: SU(2) The Compact Group U (2) ◮ Representations of U (2): π ( j , n ) = Pol 2 j ( C 2 ) ⊗ det j + n . The action on f ∈ Pol 2 j ( C 2 ) is given by f ( z ) �→ f ( g − 1 z ). ◮ Highest weight ( j , n ), j , n half integers, j ≥ 0; weight vectors z j − m z j + m v ( j , n ) √ = ( j − m )!( j + m )! with − j ≤ m ≤ j . 1 2 m ◮ Action of Pauli matrices: weight vectors are normalized such that γ 0 v ( j , n ) = i nv ( j , n ) , γ 3 v ( j , n ) = i mv ( j , n ) m m m m ( j ∓ m )( j ± m + 1) v j ( γ 1 ± i γ 2 ) v j � m = − i m ± 1

  9. Clebsch-Gordan Coefficients and Principal Series Representations Preparation: SU(2) The Compact Group U (2) ◮ Representations of U (2): π ( j , n ) = Pol 2 j ( C 2 ) ⊗ det j + n . The action on f ∈ Pol 2 j ( C 2 ) is given by f ( z ) �→ f ( g − 1 z ). ◮ Highest weight ( j , n ), j , n half integers, j ≥ 0; weight vectors z j − m z j + m v ( j , n ) √ = ( j − m )!( j + m )! with − j ≤ m ≤ j . 1 2 m ◮ Action of Pauli matrices: weight vectors are normalized such that γ 0 v ( j , n ) = i nv ( j , n ) , γ 3 v ( j , n ) = i mv ( j , n ) m m m m ( j ∓ m )( j ± m + 1) v j ( γ 1 ± i γ 2 ) v j � m = − i m ± 1 ◮ The raising and lowering operators

  10. � � � � � � Clebsch-Gordan Coefficients and Principal Series Representations Preparation: SU(2) The Compact Group U (2) ◮ Representations of U (2): π ( j , n ) = Pol 2 j ( C 2 ) ⊗ det j + n . The action on f ∈ Pol 2 j ( C 2 ) is given by f ( z ) �→ f ( g − 1 z ). ◮ Highest weight ( j , n ), j , n half integers, j ≥ 0; weight vectors z j − m z j + m v ( j , n ) √ = ( j − m )!( j + m )! with − j ≤ m ≤ j . 1 2 m ◮ Action of Pauli matrices: weight vectors are normalized such that γ 0 v ( j , n ) = i nv ( j , n ) , γ 3 v ( j , n ) = i mv ( j , n ) m m m m ( j ∓ m )( j ± m + 1) v j ( γ 1 ± i γ 2 ) v j � m = − i m ± 1 ◮ The raising and lowering operators ◮ 2 j ≡ 0 mod 2: γ 1+ i γ 2 � . . . γ 1+ i γ 2 � γ 1+ i γ 2 � γ 1 − i γ 2 � γ 1+ i γ 2 � . . . γ 1+ i γ 2 � − j − 1 0 1 j γ 1 − i γ 2 γ 1 − i γ 2 γ 1 − i γ 2 γ 1 − i γ 2 γ 1 − i γ 2 γ 1 − i γ 2

  11. � � � � � � � � � � � Clebsch-Gordan Coefficients and Principal Series Representations Preparation: SU(2) The Compact Group U (2) ◮ Representations of U (2): π ( j , n ) = Pol 2 j ( C 2 ) ⊗ det j + n . The action on f ∈ Pol 2 j ( C 2 ) is given by f ( z ) �→ f ( g − 1 z ). ◮ Highest weight ( j , n ), j , n half integers, j ≥ 0; weight vectors z j − m z j + m v ( j , n ) √ = ( j − m )!( j + m )! with − j ≤ m ≤ j . 1 2 m ◮ Action of Pauli matrices: weight vectors are normalized such that γ 0 v ( j , n ) = i nv ( j , n ) , γ 3 v ( j , n ) = i mv ( j , n ) m m m m ( j ∓ m )( j ± m + 1) v j ( γ 1 ± i γ 2 ) v j � m = − i m ± 1 ◮ The raising and lowering operators ◮ 2 j ≡ 0 mod 2: γ 1+ i γ 2 � . . . γ 1+ i γ 2 � γ 1+ i γ 2 � γ 1 − i γ 2 � γ 1+ i γ 2 � . . . γ 1+ i γ 2 � − j − 1 0 1 j γ 1 − i γ 2 γ 1 − i γ 2 γ 1 − i γ 2 γ 1 − i γ 2 γ 1 − i γ 2 γ 1 − i γ 2 ◮ 2 j ≡ 1 mod 2: γ 1+ i γ 2 � . . . γ 1+ i γ 2 � γ 1+ i γ 2 � γ 1+ i γ 2 � . . . γ 1+ i γ 2 � − 1 1 − j j 2 2 γ 1 − i γ 2 γ 1 − i γ 2 γ 1 − i γ 2 γ 1 − i γ 2 γ 1 − i γ 2

  12. Clebsch-Gordan Coefficients and Principal Series Representations Preparation: SU(2) The Compact Group U (2) ◮ Matrix coefficients: Wigner D-functions D ( j , n ) m 2 , e ζ γ 0 e φ γ 3 e θ γ 2 e ψ γ 3 v j m 1 , m 2 ( ζ, φ, θ, ψ ) = � v j m 1 � K m 2 e i n ζ e i ( m 1 ψ + m 2 φ ) d ( j , n ) = c j m 1 c j m 1 , m 2 ( θ ) . in which

  13. Clebsch-Gordan Coefficients and Principal Series Representations Preparation: SU(2) The Compact Group U (2) ◮ Matrix coefficients: Wigner D-functions D ( j , n ) m 2 , e ζ γ 0 e φ γ 3 e θ γ 2 e ψ γ 3 v j m 1 , m 2 ( ζ, φ, θ, ψ ) = � v j m 1 � K m 2 e i n ζ e i ( m 1 ψ + m 2 φ ) d ( j , n ) = c j m 1 c j m 1 , m 2 ( θ ) . in which ◮ c j � m = ( j + m )!( j − m )! is a normalization factor

  14. Clebsch-Gordan Coefficients and Principal Series Representations Preparation: SU(2) The Compact Group U (2) ◮ Matrix coefficients: Wigner D-functions D ( j , n ) m 2 , e ζ γ 0 e φ γ 3 e θ γ 2 e ψ γ 3 v j m 1 , m 2 ( ζ, φ, θ, ψ ) = � v j m 1 � K m 2 e i n ζ e i ( m 1 ψ + m 2 φ ) d ( j , n ) = c j m 1 c j m 1 , m 2 ( θ ) . in which ◮ c j � m = ( j + m )!( j − m )! is a normalization factor ◮ d ( j , n ) m 1 , m 2 ( θ ) is given by the hypergeometric sum: min( j − m 2 , j + m 1) ( − 1) m 2 − m 1+ p d ( j , n ) � m 1 , m 2 ( θ ) = ( j + m 1 − p )! p !( m 2 − m 1 + p )!( j − m 2 − p )! p =max(0 , m 1 − m 2) � θ � θ � � sin m 2 − m 1+2 p cos 2 j + m 1 − m 2 − 2 p . 2 2

  15. Clebsch-Gordan Coefficients and Principal Series Representations Preparation: SU(2) The Compact Group U (2) ◮ The Jacobi polynomials are defined as in Wolfram Function Site, NIST, Abramovich-Stegun e.g. � � x + 1 � n � n + α � − n , − n − β, α + 1; x − 1 � P α,β ( x ) = . 2 F 1 n 2 x + 1 n where n ≥ 0.

  16. Clebsch-Gordan Coefficients and Principal Series Representations Preparation: SU(2) The Compact Group U (2) ◮ The Jacobi polynomials are defined as in Wolfram Function Site, NIST, Abramovich-Stegun e.g. � � x + 1 � n � n + α � − n , − n − β, α + 1; x − 1 � P α,β ( x ) = . 2 F 1 n 2 x + 1 n where n ≥ 0. ◮ d ( j , n ) m 1 , m 2 ( θ ) can be expressed in terms of Jacobi polynomials � m 1 − m 2 � � m 1 + m 2 � sin θ cos θ 2 2 d ( j , n ) P ( m 1 − m 2 , m 1 + m 2 ) m 1 , m 2 ( θ ) = (cos θ ) j − m 1 ( j + m 2 )!( j − m 2 )!

  17. Clebsch-Gordan Coefficients and Principal Series Representations Preparation: SU(2) The Compact Group U (2) Why we do this? ◮ Generating function for Jacobi polynomials ∞ � α � � β � 1 + 1 1 + 1 ( x ) t n = � P ( α − n ,β − n ) 2 ( x + 1) t 2 ( x − 1) t n n =0

  18. Clebsch-Gordan Coefficients and Principal Series Representations Preparation: SU(2) The Compact Group U (2) Why we do this? ◮ Generating function for Jacobi polynomials ∞ � α � � β � 1 + 1 1 + 1 ( x ) t n = � P ( α − n ,β − n ) 2 ( x + 1) t 2 ( x − 1) t n n =0 ◮ Product of Wigner D -functions: Clebsch-Gordan coefficients � � � � D ( j 1 , n 1 ) m 11 , m 12 D ( j 2 , n 2 ) � J , M 1 J , M 2 D ( J , n 1 + n 2 ) m 21 , m 22 = j 1 , m 11 , j 2 , m 21 j 1 , m 12 , j 2 , m 22 M 1 , M 2 | j 1 − j 2 |≤ J ≤ j 1 + j 2 J −| j 1 − j 2 |∈ Z The Clebsch-Gordan coefficients can be computed following a recursive procedure.

  19. Clebsch-Gordan Coefficients and Principal Series Representations Preparation: SU(2) The ( g , K )-Module Structure Explicitly ◮ The ( g , K ) action can be written as differential operators on C ∞ ( K ) acting on Wigner D -functions.

  20. Clebsch-Gordan Coefficients and Principal Series Representations Preparation: SU(2) The ( g , K )-Module Structure Explicitly ◮ The ( g , K ) action can be written as differential operators on C ∞ ( K ) acting on Wigner D -functions. ◮ For a K -type τ ( j , n ) , calculate the homomorphism of K -representations T e ( g / k ) ⊗ τ ( j , n ) ∼ = p C ⊗ τ ( j , n ) − → C ∞ ( K ) which sends X ⊗ v to X · v . (compare SL (3 , R ) Buttcane-Miller ’17)

  21. Clebsch-Gordan Coefficients and Principal Series Representations Preparation: SU(2) The ( g , K )-Module Structure Explicitly ◮ The ( g , K ) action can be written as differential operators on C ∞ ( K ) acting on Wigner D -functions. ◮ For a K -type τ ( j , n ) , calculate the homomorphism of K -representations T e ( g / k ) ⊗ τ ( j , n ) ∼ = p C ⊗ τ ( j , n ) − → C ∞ ( K ) which sends X ⊗ v to X · v . (compare SL (3 , R ) Buttcane-Miller ’17) ◮ The Cartan decomposition g = k ⊕ p puts a Z / 2-grading on g . If rank of G and K are equal, the roots fall into two subsets ∆ = ∆ c ∪ ∆ nc compact/noncompact roots respectively, depending on whether the root subspace g α is a subset of k or p .

  22. Clebsch-Gordan Coefficients and Principal Series Representations Rank 1 Groups SU ( n , 1) Example: SU (2 , 1) ◮ The group G = SU ( n , 1) has real rank 1, and maximal compact subgroup K = S ( U ( n ) ⊗ U (1)).

  23. Clebsch-Gordan Coefficients and Principal Series Representations Rank 1 Groups SU ( n , 1) Example: SU (2 , 1) ◮ The group G = SU ( n , 1) has real rank 1, and maximal compact subgroup K = S ( U ( n ) ⊗ U (1)). � 1 2 � 0 ◮ SU (2 , 1) = { g ∈ SL (3 , C ) | ¯ g t Jg = J } , J = ; 0 − 1

  24. Clebsch-Gordan Coefficients and Principal Series Representations Rank 1 Groups SU ( n , 1) Example: SU (2 , 1) ◮ The group G = SU ( n , 1) has real rank 1, and maximal compact subgroup K = S ( U ( n ) ⊗ U (1)). � 1 2 � 0 ◮ SU (2 , 1) = { g ∈ SL (3 , C ) | ¯ g t Jg = J } , J = ; 0 − 1 g t ) − 1 J − 1 an antiholomorphic involution, SU (2 , 1) = SL (3 , C ) σ ; ◮ σ ( g ) = J (¯

  25. Clebsch-Gordan Coefficients and Principal Series Representations Rank 1 Groups SU ( n , 1) Example: SU (2 , 1) ◮ The group G = SU ( n , 1) has real rank 1, and maximal compact subgroup K = S ( U ( n ) ⊗ U (1)). � 1 2 � 0 ◮ SU (2 , 1) = { g ∈ SL (3 , C ) | ¯ g t Jg = J } , J = ; 0 − 1 g t ) − 1 J − 1 an antiholomorphic involution, SU (2 , 1) = SL (3 , C ) σ ; ◮ σ ( g ) = J (¯ � U (2) 0 � g t ) − 1 a Cartan involution, K = ◮ θ ( g ) = (¯ = G θ ; (det) − 1 0

  26. Clebsch-Gordan Coefficients and Principal Series Representations Rank 1 Groups SU ( n , 1) Example: SU (2 , 1) ◮ The group G = SU ( n , 1) has real rank 1, and maximal compact subgroup K = S ( U ( n ) ⊗ U (1)). � 1 2 � 0 ◮ SU (2 , 1) = { g ∈ SL (3 , C ) | ¯ g t Jg = J } , J = ; 0 − 1 g t ) − 1 J − 1 an antiholomorphic involution, SU (2 , 1) = SL (3 , C ) σ ; ◮ σ ( g ) = J (¯ � U (2) 0 � g t ) − 1 a Cartan involution, K = ◮ θ ( g ) = (¯ = G θ ; (det) − 1 0 ◮ For SU (2 , 1), ∆ + c = { α 1 } , ∆ + nc = { α 2 , α 1 + α 2 } α 2 α 1 + α 2 ̟ 2 ̟ 1 α 1 Green: ∆ nc ; Blue: ∆ c

  27. Clebsch-Gordan Coefficients and Principal Series Representations Rank 1 Groups SU ( n , 1) Example: SU (2 , 1) ◮ The group G = SU ( n , 1) has real rank 1, and maximal compact subgroup K = S ( U ( n ) ⊗ U (1)). � 1 2 � 0 ◮ SU (2 , 1) = { g ∈ SL (3 , C ) | ¯ g t Jg = J } , J = ; 0 − 1 g t ) − 1 J − 1 an antiholomorphic involution, SU (2 , 1) = SL (3 , C ) σ ; ◮ σ ( g ) = J (¯ � U (2) 0 � g t ) − 1 a Cartan involution, K = ◮ θ ( g ) = (¯ = G θ ; (det) − 1 0 ◮ For SU (2 , 1), ∆ + c = { α 1 } , ∆ + nc = { α 2 , α 1 + α 2 } α 2 α 1 + α 2 ̟ 2 ̟ 1 α 1 Green: ∆ nc ; Blue: ∆ c ◮ The two irreducible pieces of p C are p ± C = span { u (1 / 2 , ± 3 / 2) } m ∈{− 1 / 2 , 1 / 2 } m

  28. Clebsch-Gordan Coefficients and Principal Series Representations Rank 1 Groups SU ( n , 1) Example: SU (2 , 1) Induction Data ◮ Minimal parabolic P = MAN , � i w z − i w � � cosh t 0 sinh t � e i s � 0 0 � exp 0 e − 2 i s − ¯ z 0 z ¯ 0 0 0 0 sinh t 0 cosh t i w z − i w e i s 0 0

  29. Clebsch-Gordan Coefficients and Principal Series Representations Rank 1 Groups SU ( n , 1) Example: SU (2 , 1) Induction Data ◮ Minimal parabolic P = MAN , � i w z − i w � � cosh t 0 sinh t � e i s � 0 0 � exp 0 e − 2 i s − ¯ z 0 z ¯ 0 0 0 0 sinh t 0 cosh t i w z − i w e i s 0 0 ◮ M ∼ = S 1 , character on M given by δ ∈ Z

  30. Clebsch-Gordan Coefficients and Principal Series Representations Rank 1 Groups SU ( n , 1) Example: SU (2 , 1) Induction Data ◮ Minimal parabolic P = MAN , � i w z − i w � � cosh t 0 sinh t � e i s � 0 0 � exp 0 e − 2 i s − ¯ z 0 z ¯ 0 0 0 0 sinh t 0 cosh t i w z − i w e i s 0 0 ◮ M ∼ = S 1 , character on M given by δ ∈ Z ◮ A ∼ = R > 0 , character on A given by a λ ∈ C

  31. Clebsch-Gordan Coefficients and Principal Series Representations Rank 1 Groups SU ( n , 1) Example: SU (2 , 1) Induction Data ◮ Minimal parabolic P = MAN , � i w z − i w � � cosh t 0 sinh t � e i s � 0 0 � exp 0 e − 2 i s − ¯ z 0 ¯ z 0 0 0 0 sinh t 0 cosh t i w z − i w e i s 0 0 ◮ M ∼ = S 1 , character on M given by δ ∈ Z ◮ A ∼ = R > 0 , character on A given by a λ ∈ C ◮ They define a character χ δ,λ sending the above element to e i δ t + λ t .

  32. Clebsch-Gordan Coefficients and Principal Series Representations Rank 1 Groups SU ( n , 1) SU (2 , 1) Principal Series (Bars-Teng ’90, Ishikawa ’91 or earlier) ◮ The principal series I P ( χ δ,λ ) decompose into K -isotypic spaces: � τ ( j , n ) I P ( χ δ,λ ) = − 3 j + δ ≤ n ≤ 3 j + δ

  33. Clebsch-Gordan Coefficients and Principal Series Representations Rank 1 Groups SU ( n , 1) SU (2 , 1) Principal Series (Bars-Teng ’90, Ishikawa ’91 or earlier) ◮ The principal series I P ( χ δ,λ ) decompose into K -isotypic spaces: � τ ( j , n ) I P ( χ δ,λ ) = − 3 j + δ ≤ n ≤ 3 j + δ ◮ Each τ ( j , n ) has decomposition: τ ( j , n ) = � C D ( j , n ) m 1 , m 2 m 2 ∈{− j , − j +1 ,..., j } m 1 =( n − δ ) / 3

  34. Clebsch-Gordan Coefficients and Principal Series Representations Rank 1 Groups SU ( n , 1) SU (2 , 1) Principal Series (Bars-Teng ’90, Ishikawa ’91 or earlier) ◮ The principal series I P ( χ δ,λ ) decompose into K -isotypic spaces: � τ ( j , n ) I P ( χ δ,λ ) = − 3 j + δ ≤ n ≤ 3 j + δ ◮ Each τ ( j , n ) has decomposition: τ ( j , n ) = � C D ( j , n ) m 1 , m 2 m 2 ∈{− j , − j +1 ,..., j } m 1 =( n − δ ) / 3 ◮ A better picture to draw: let n = δ + 3 2 l , j = k 2 , we can depict all the K -types on a quadrant: { ( k , l ) ∈ Z ≥ 0 × Z | − k ≤ l ≤ k and k ≡ l mod 2 } .

  35. Clebsch-Gordan Coefficients and Principal Series Representations Rank 1 Groups SU ( n , 1) SU (2 , 1) Principal Series (Bars-Teng ’90, Ishikawa ’91 or earlier) ◮ The homomorphism d l : p ⊗ τ ( j , n ) − → C ∞ ( K ) is(compare Buttcane-Miller ’17): ( 1 2 , ± 3 2 ) ) D ( j , n ) d l ( u m 1 , m 2 = m � j + j 0 , m 2 − m 1 ( j + j 0 , n ∓ 3 � 2 ) � 2 √ 2 j + 1 q j 0 , ∓ κ j 0 , ∓ ( j , n , m 1 ; λ ) D J , m 2 , 1 2 , − m m 1 ∓ 1 2 , m 2 − m j 0 ∈{± 1 2 }

  36. Clebsch-Gordan Coefficients and Principal Series Representations Rank 1 Groups SU ( n , 1) SU (2 , 1) Principal Series (Bars-Teng ’90, Ishikawa ’91 or earlier) ◮ The homomorphism d l : p ⊗ τ ( j , n ) − → C ∞ ( K ) is(compare Buttcane-Miller ’17): ( 1 2 , ± 3 2 ) ) D ( j , n ) d l ( u m 1 , m 2 = m � j + j 0 , m 2 − m 1 ( j + j 0 , n ∓ 3 � 2 ) � 2 √ 2 j + 1 q j 0 , ∓ κ j 0 , ∓ ( j , n , m 1 ; λ ) D J , m 2 , 1 2 , − m m 1 ∓ 1 2 , m 2 − m j 0 ∈{± 1 2 } ◮ The coefficients q j 0 , ± are in the following tables: q j 0 , ∓ - + √ j + m 1 √ j − m 1 j 0 = − 1 2 √ j − m 1 + 1 √ j + m 1 + 1 j 0 = 1 2

  37. Clebsch-Gordan Coefficients and Principal Series Representations Rank 1 Groups SU ( n , 1) SU (2 , 1) Principal Series (Bars-Teng ’90, Ishikawa ’91 or earlier) ◮ The homomorphism d l : p ⊗ τ ( j , n ) − → C ∞ ( K ) is(compare Buttcane-Miller ’17): ( 1 2 , ± 3 2 ) ) D ( j , n ) d l ( u m 1 , m 2 = m � j + j 0 , m 2 − m 1 ( j + j 0 , n ∓ 3 � 2 ) � 2 √ 2 j + 1 q j 0 , ∓ κ j 0 , ∓ ( j , n , m 1 ; λ ) D J , m 2 , 1 2 , − m m 1 ∓ 1 2 , m 2 − m j 0 ∈{± 1 2 } ◮ The coefficients q j 0 , ± are in the following tables: q j 0 , ∓ - + √ j + m 1 √ j − m 1 j 0 = − 1 2 √ j − m 1 + 1 √ j + m 1 + 1 j 0 = 1 2 ◮ The κ j 0 , ∓ ’s are affine linear functions in λ : κ j 0 , ∓ - + j 0 = − 1 2 j − m 1 + n − ( λ + ρ 0 ) + 2 2 j + m 1 − n − ( λ + ρ 0 ) + 2 2 j 0 = 1 − 2 j − m 1 + n − ( λ + ρ 0 ) 2 j − m 1 + n + ( λ + ρ 0 ) 2

  38. Clebsch-Gordan Coefficients and Principal Series Representations Rank 1 Groups SU ( n , 1) SU (2 , 1) Principal Series (Bars-Teng ’90, Ishikawa ’91 or earlier) V W Legend: means there exists a submodule V ⊂ I P ( χ δ,λ ) such that I P ( χ δ,λ ) / V ∼ = W . λ − δ ( λ − δ , 3 λ + δ ) 4 4 l I 1 ( λ 2 , − δ (0 , δ ) k 2 ) λ + δ , − 3 λ + δ ( λ + δ ) 4 4 The composition series when χ δ,λ ∈ Weyl Chamber I 1 : V H V fin W 1 W 2 ⊕

  39. Clebsch-Gordan Coefficients and Principal Series Representations Rank 1 Groups SU ( n , 1) SU (2 , 1) Principal Series (Bars-Teng ’90, Ishikawa ’91 or earlier) V W Legend: means there exists a submodule V ⊂ I P ( χ δ,λ ) such that I P ( χ δ,λ ) / V ∼ = W . λ − δ II 1 ( λ − δ , 3 λ + δ ) 4 4 λ + δ ( − λ − δ , − 3 λ + δ ) 4 4 (0 , δ ) The composition series when χ δ,λ ∈ Weyl Chamber II 1 : V 2 V H W 2 ⊕

  40. Clebsch-Gordan Coefficients and Principal Series Representations Rank 1 Groups SU ( n , 1) SU (2 , 1) Principal Series (Bars-Teng ’90, Ishikawa ’91 or earlier) V W Legend: means there exists a submodule V ⊂ I P ( χ δ,λ ) such that I P ( χ δ,λ ) / V ∼ = W . λ − δ II 2 ( − λ − δ , − 3 λ + δ ) 4 4 λ + δ ( λ − δ , 3 λ + δ ) 4 4 (0 , δ ) The composition series when χ δ,λ ∈ Weyl Chamber II 2 : V 2 V H W 2 ⊕

  41. Clebsch-Gordan Coefficients and Principal Series Representations Rank 1 Groups SU ( n , 1) SU (2 , 1) Principal Series (Bars-Teng ’90, Ishikawa ’91 or earlier) V W Legend: means there exists a submodule V ⊂ I P ( χ δ,λ ) such that I P ( χ δ,λ ) / V ∼ = W . λ − δ ( λ + δ , − 3 λ + δ ) 4 4 ( λ 2 , − δ (0 , δ ) 2 ) λ + δ I 2 ( λ − δ , 3 λ + δ ) 4 4 The composition series when χ δ,λ ∈ Weyl Chamber I 2 : V fin V H W 1 W 2 ⊕

  42. Clebsch-Gordan Coefficients and Principal Series Representations Rank 1 Groups SU ( n , 1) SU (2 , 1) Principal Series (Bars-Teng ’90, Ishikawa ’91 or earlier) V W Legend: means there exists a submodule V ⊂ I P ( χ δ,λ ) such that I P ( χ δ,λ ) / V ∼ = W . λ − δ (0 , δ ) ( − λ + δ , 3 λ + δ ) 4 4 ( λ + δ , − 3 λ + δ ) 4 4 λ + δ III 1 The composition series when χ δ,λ ∈ Weyl Chamber III 1 : V 1 V H W 1 ⊕

  43. Clebsch-Gordan Coefficients and Principal Series Representations Rank 1 Groups SU ( n , 1) SU (2 , 1) Principal Series (Bars-Teng ’90, Ishikawa ’91 or earlier) V W Legend: means there exists a submodule V ⊂ I P ( χ δ,λ ) such that I P ( χ δ,λ ) / V ∼ = W . λ − δ (0 , δ ) ( λ + δ , − 3 λ + δ ) 4 4 ( − λ + δ , 3 λ + δ ) 4 4 λ + δ III 2 The composition series when χ δ,λ ∈ Weyl Chamber III 2 : V 1 V H W 1 ⊕

  44. Clebsch-Gordan Coefficients and Principal Series Representations Sp (4 , R ) Example Example: Sp (4 , R ) ◮ The group G = Sp (4 , R ) is rank 2, with maximal compact K = U (2).

  45. Clebsch-Gordan Coefficients and Principal Series Representations Sp (4 , R ) Example Example: Sp (4 , R ) ◮ The group G = Sp (4 , R ) is rank 2, with maximal compact K = U (2). � 0 2 � 1 2 ◮ Sp (4 , R ) = { g ∈ SL (4 , C ) | g t Jg = J } , J = − 1 2 0 2

  46. Clebsch-Gordan Coefficients and Principal Series Representations Sp (4 , R ) Example Example: Sp (4 , R ) ◮ The group G = Sp (4 , R ) is rank 2, with maximal compact K = U (2). � 0 2 � 1 2 ◮ Sp (4 , R ) = { g ∈ SL (4 , C ) | g t Jg = J } , J = − 1 2 0 2 g an antiholomorphic involution, Sp (4 , R ) = Sp (4 , C ) σ ; ◮ σ ( g ) = ¯

  47. Clebsch-Gordan Coefficients and Principal Series Representations Sp (4 , R ) Example Example: Sp (4 , R ) ◮ The group G = Sp (4 , R ) is rank 2, with maximal compact K = U (2). � 0 2 � 1 2 ◮ Sp (4 , R ) = { g ∈ SL (4 , C ) | g t Jg = J } , J = − 1 2 0 2 g an antiholomorphic involution, Sp (4 , R ) = Sp (4 , C ) σ ; ◮ σ ( g ) = ¯ � � A B ◮ θ ( g ) = ( g t ) − 1 a Cartan involution, k = = g θ ; − B A

  48. Clebsch-Gordan Coefficients and Principal Series Representations Sp (4 , R ) Example Example: Sp (4 , R ) ◮ The group G = Sp (4 , R ) is rank 2, with maximal compact K = U (2). � 0 2 � 1 2 ◮ Sp (4 , R ) = { g ∈ SL (4 , C ) | g t Jg = J } , J = − 1 2 0 2 g an antiholomorphic involution, Sp (4 , R ) = Sp (4 , C ) σ ; ◮ σ ( g ) = ¯ � � A B ◮ θ ( g ) = ( g t ) − 1 a Cartan involution, k = = g θ ; − B A � � A B ◮ k ∼ = u (2) via �→ A + i B . − B A

  49. Clebsch-Gordan Coefficients and Principal Series Representations Sp (4 , R ) Example Example: Sp (4 , R ) ◮ The group G = Sp (4 , R ) is rank 2, with maximal compact K = U (2). � 0 2 � 1 2 ◮ Sp (4 , R ) = { g ∈ SL (4 , C ) | g t Jg = J } , J = − 1 2 0 2 g an antiholomorphic involution, Sp (4 , R ) = Sp (4 , C ) σ ; ◮ σ ( g ) = ¯ � � A B ◮ θ ( g ) = ( g t ) − 1 a Cartan involution, k = = g θ ; − B A � � A B ◮ k ∼ = u (2) via �→ A + i B . − B A ◮ ∆ + c = { α 1 } , ∆ + nc = { α 2 , α 1 + α 2 , 2 α 1 + α 2 } α 2 ̟ 2 α 1 + α 2 ̟ 1 2 α 1 + α 2 α 1 Green: ∆ nc ; Blue: ∆ c

  50. Clebsch-Gordan Coefficients and Principal Series Representations Sp (4 , R ) Example Example: Sp (4 , R ) ◮ The group G = Sp (4 , R ) is rank 2, with maximal compact K = U (2). � 0 2 � 1 2 ◮ Sp (4 , R ) = { g ∈ SL (4 , C ) | g t Jg = J } , J = − 1 2 0 2 g an antiholomorphic involution, Sp (4 , R ) = Sp (4 , C ) σ ; ◮ σ ( g ) = ¯ � � A B ◮ θ ( g ) = ( g t ) − 1 a Cartan involution, k = = g θ ; − B A � � A B ◮ k ∼ = u (2) via �→ A + i B . − B A ◮ ∆ + c = { α 1 } , ∆ + nc = { α 2 , α 1 + α 2 , 2 α 1 + α 2 } α 2 ̟ 2 α 1 + α 2 ̟ 1 2 α 1 + α 2 α 1 Green: ∆ nc ; Blue: ∆ c C = span { u (1 , ± 1) ◮ The two irreducible pieces of p C are p ± } m ∈{− 1 , 0 , 1 } m

  51. Clebsch-Gordan Coefficients and Principal Series Representations Sp (4 , R ) Example Example: Sp (4 , R ) Induction Data ◮ Minimal parabolic: P = MAN � ǫ 2 � t 1 0 � ǫ 1 � 0 0 � � 1 0 0 0 − 1 0 0 0 0 t 2 0 0 0 − 1 0 0 0 1 0 0 N 0 0 1 0 0 0 − 1 0 0 0 1 / t 1 0 0 0 0 − 1 0 0 0 1 0 0 0 1 / t 2

  52. Clebsch-Gordan Coefficients and Principal Series Representations Sp (4 , R ) Example Example: Sp (4 , R ) Induction Data ◮ Minimal parabolic: P = MAN � ǫ 2 � t 1 0 � ǫ 1 � 0 0 � � 1 0 0 0 − 1 0 0 0 0 t 2 0 0 0 − 1 0 0 0 1 0 0 N 0 0 1 0 0 0 − 1 0 0 0 1 / t 1 0 0 0 0 − 1 0 0 0 1 0 0 0 1 / t 2 ◮ M ∼ = Z 2 × Z 2 , character on M given by ( δ 1 , δ 2 ), δ i ∈ { 0 , 1 }

  53. Clebsch-Gordan Coefficients and Principal Series Representations Sp (4 , R ) Example Example: Sp (4 , R ) Induction Data ◮ Minimal parabolic: P = MAN � ǫ 2 � t 1 0 � ǫ 1 � 0 0 � � 1 0 0 0 − 1 0 0 0 0 t 2 0 0 0 − 1 0 0 0 1 0 0 N 0 0 1 0 0 0 − 1 0 0 0 1 / t 1 0 0 0 0 − 1 0 0 0 1 0 0 0 1 / t 2 ◮ M ∼ = Z 2 × Z 2 , character on M given by ( δ 1 , δ 2 ), δ i ∈ { 0 , 1 } ◮ A ∼ = ( R > 0 ) 2 , character on A given by ( λ 1 , λ 2 ) ∈ C 2

  54. Clebsch-Gordan Coefficients and Principal Series Representations Sp (4 , R ) Example Example: Sp (4 , R ) Induction Data ◮ Minimal parabolic: P = MAN � ǫ 2 � t 1 0 � ǫ 1 � 0 0 � � 1 0 0 0 − 1 0 0 0 0 t 2 0 0 0 − 1 0 0 0 1 0 0 N 0 0 1 0 0 0 − 1 0 0 0 1 / t 1 0 0 0 0 − 1 0 0 0 1 0 0 0 1 / t 2 ◮ M ∼ = Z 2 × Z 2 , character on M given by ( δ 1 , δ 2 ), δ i ∈ { 0 , 1 } ◮ A ∼ = ( R > 0 ) 2 , character on A given by ( λ 1 , λ 2 ) ∈ C 2 ◮ They define a character χ δ,λ sending the above element to ( − 1) δ 1 ǫ 1 + δ 2 ǫ 2 t λ 1 1 t λ 2 2

  55. Clebsch-Gordan Coefficients and Principal Series Representations Sp (4 , R ) Example Sp (4 , R ) Principal Series ◮ The restriction of the principal series I P ( χ δ,λ ) to K can be decomposed as a direct sum of K -isotypic spaces τ ( j , n ) : � τ ( j , n ) . I P ( χ δ,λ ) = ( j , n ) ∈ KTypes ( δ 1 ,δ 2 )

  56. Clebsch-Gordan Coefficients and Principal Series Representations Sp (4 , R ) Example Sp (4 , R ) Principal Series ◮ The restriction of the principal series I P ( χ δ,λ ) to K can be decomposed as a direct sum of K -isotypic spaces τ ( j , n ) : � τ ( j , n ) . I P ( χ δ,λ ) = ( j , n ) ∈ KTypes ( δ 1 ,δ 2 ) ◮ Each space τ ( j , n ) is τ ( j , n ) = C D ( j , n ) � m 1 , m 2 m 2 ∈{− j , − j +1 ,..., j } m 1 ∈ M ( j , n ; δ 1 ,δ 2 )

  57. Clebsch-Gordan Coefficients and Principal Series Representations Sp (4 , R ) Example Sp (4 , R ) Principal Series ◮ The restriction of the principal series I P ( χ δ,λ ) to K can be decomposed as a direct sum of K -isotypic spaces τ ( j , n ) : � τ ( j , n ) . I P ( χ δ,λ ) = ( j , n ) ∈ KTypes ( δ 1 ,δ 2 ) ◮ Each space τ ( j , n ) is τ ( j , n ) = C D ( j , n ) � m 1 , m 2 m 2 ∈{− j , − j +1 ,..., j } m 1 ∈ M ( j , n ; δ 1 ,δ 2 ) ◮ The two sets of admissible j , n , m 1 , m 2 ’s are defined as: KTypes ( δ 1 , δ 2 ) = { ( j , n ) ∈ 1 2 Z + × 1 2 Z | 2 j ≡ δ 2 − δ 1 and 2 n ≡ δ 2 + δ 1 mod 2 } M ( j , n ; δ 1 , δ 2 ) = { m 1 ∈ {− j , − j + 1 , . . . , j − 1 , j }| n − m 1 ≡ δ 1 and n + m 1 ≡ δ 2 mod 2 } .

  58. Clebsch-Gordan Coefficients and Principal Series Representations Sp (4 , R ) Example Sp (4 , R ) Principal Series The homomorphism d l : p ⊗ τ ( j , n ) − → C ∞ ( K ) is m 1 , m 2 = ( − 1) m 1 i d l ( u (1 , ± 1) ) D ( j , n ) m 2 � � � � j + j 0 , m 2 − m C j + j 0 q j 0 ,ε κ ± , j 0 ,ε ( j , n , m 1 ; λ ) D ( j + j 0 , n ∓ 1) m 1 + ε, m 2 − m j , m 2 , 1 , − m j 0 ∈{− 1 , 0 , 1 } ε = ± 1 with the coefficients given the tables in the next frame.

  59. Clebsch-Gordan Coefficients and Principal Series Representations Sp (4 , R ) Example Sp (4 , R ) Principal Series C j + j 0 j − 1 2 (2 j + 1) − 1 j 0 = − 1 2 j − 1 2 ( j + 1) − 1 j 0 = 0 2 ( j + 1) − 1 2 (2 j + 1) − 1 j 0 = 1 2 q j 0 ,ε ε = − 1 ε = 1 � � j 0 = − 1 ( j + m 1 − 1)( j + m 1 ) ( j − m 1 − 1)( j − m 1 ) � � j 0 = 0 ( j + m 1 )( j − m 1 + 1) ( j − m 1 )( j + m 1 + 1) � � j 0 = 1 ( j − m 1 + 1)( j − m 1 + 2) ( j + m 1 + 1)( j + m 1 + 2) κ + , j 0 ,ε ε = − 1 ε = 1 j 0 = − 1 2 j − m 1 + n − � ˇ α 1 , λ + ρ 0 � + 2 n − m 1 − � ˇ α 2 , λ + ρ 0 � j 0 = 0 n − m 1 − � ˇ α 1 , λ + ρ 0 � + 2 m 1 − n + � ˇ α 2 , λ + ρ 0 � j 0 = 1 − 2 j − m 1 + n − � ˇ α 1 , λ + ρ 0 � n − m 1 − � ˇ α 2 , λ + ρ 0 � κ − , j 0 ,ε ε = − 1 ε = 1 j 0 = − 1 − n + m 1 − � ˇ α 2 , λ + ρ 0 � 2 j + m 1 − n − � ˇ α 1 , λ + ρ 0 � + 2 j 0 = 0 − n + m 1 − � ˇ α 2 , λ + ρ 0 � − m 1 + n + � ˇ α 1 , λ + ρ 0 � − 2 j 0 = 1 − n + m 1 − � ˇ α 2 , λ + ρ 0 � 2 j + m 1 − n − � ˇ α 1 , λ + ρ 0 � + 2

  60. Clebsch-Gordan Coefficients and Principal Series Representations Calculating Intertwining Operators What are Intertwining Operators ◮ The Bargmann’s classification of unitary representations is done by introducing the intertwining operators between principal series: A ( λ ) : I ( χ δ,λ ) − → I ( χ δ, − λ )

  61. Clebsch-Gordan Coefficients and Principal Series Representations Calculating Intertwining Operators What are Intertwining Operators ◮ The Bargmann’s classification of unitary representations is done by introducing the intertwining operators between principal series: A ( λ ) : I ( χ δ,λ ) − → I ( χ δ, − λ ) ◮ It is defines as the integral operator: � ∞ � 0 − 1 � � 1 � x ( A ( λ ) f )( g ) = f ( g ) 1 0 0 1 −∞

  62. Clebsch-Gordan Coefficients and Principal Series Representations Calculating Intertwining Operators What are Intertwining Operators ◮ The Bargmann’s classification of unitary representations is done by introducing the intertwining operators between principal series: A ( λ ) : I ( χ δ,λ ) − → I ( χ δ, − λ ) ◮ It is defines as the integral operator: � ∞ � 0 − 1 � � 1 � x ( A ( λ ) f )( g ) = f ( g ) 1 0 0 1 −∞ ◮ By computing the Iwasawa decompositions and use the vector space structure of the principal series, denote the function e i k θ ∈ I P ( χ δ,λ ) by φ λ, k Γ( λ +1 2 )Γ( λ 2 ) A ( λ ) φ λ, k = ( − i ) k √ π φ − λ, k Γ( λ +1+ k )Γ( λ − k +1 ) 2 2 When δ = 0 , λ ∈ R , then all k ∈ Z are even. The intertwining operator defines a Hermitian pairing on I ( χ δ,λ ).

  63. Clebsch-Gordan Coefficients and Principal Series Representations Calculating Intertwining Operators What are Intertwining Operators

  64. Clebsch-Gordan Coefficients and Principal Series Representations Calculating Intertwining Operators What are Intertwining Operators ◮ For w ∈ W , f ∈ I P ( χ δ,λ ), define the intertwining operator � A ( w , χ δ,λ ) f ( g ) = N ∩ N w f ( gw ¯ n ) d ¯ n ¯ such that it intertwines I P ( χ δ,λ ) and I P ( w χ δ,λ ) A ( w , χ δ,λ ) π P ( χ δ,λ )( g ) = π P ( w χ δ,λ )( g ) A ( w , χ δ,λ )

  65. Clebsch-Gordan Coefficients and Principal Series Representations Calculating Intertwining Operators What are Intertwining Operators ◮ For w ∈ W , f ∈ I P ( χ δ,λ ), define the intertwining operator � A ( w , χ δ,λ ) f ( g ) = N ∩ N w f ( gw ¯ n ) d ¯ n ¯ such that it intertwines I P ( χ δ,λ ) and I P ( w χ δ,λ ) A ( w , χ δ,λ ) π P ( χ δ,λ )( g ) = π P ( w χ δ,λ )( g ) A ( w , χ δ,λ ) ◮ It can be meromorphically continuated to all λ

  66. Clebsch-Gordan Coefficients and Principal Series Representations Calculating Intertwining Operators What are Intertwining Operators ◮ For w ∈ W , f ∈ I P ( χ δ,λ ), define the intertwining operator � A ( w , χ δ,λ ) f ( g ) = N ∩ N w f ( gw ¯ n ) d ¯ n ¯ such that it intertwines I P ( χ δ,λ ) and I P ( w χ δ,λ ) A ( w , χ δ,λ ) π P ( χ δ,λ )( g ) = π P ( w χ δ,λ )( g ) A ( w , χ δ,λ ) ◮ It can be meromorphically continuated to all λ ◮ For dominant λ , A ( w 0 ) defines the Langlands quotient of the principal series by quotienting out its kernel.

  67. Clebsch-Gordan Coefficients and Principal Series Representations Calculating Intertwining Operators What are Intertwining Operators ◮ For w ∈ W , f ∈ I P ( χ δ,λ ), define the intertwining operator � A ( w , χ δ,λ ) f ( g ) = N ∩ N w f ( gw ¯ n ) d ¯ n ¯ such that it intertwines I P ( χ δ,λ ) and I P ( w χ δ,λ ) A ( w , χ δ,λ ) π P ( χ δ,λ )( g ) = π P ( w χ δ,λ )( g ) A ( w , χ δ,λ ) ◮ It can be meromorphically continuated to all λ ◮ For dominant λ , A ( w 0 ) defines the Langlands quotient of the principal series by quotienting out its kernel. ◮ (Knapp, Wallach, Barbasch)If w 0 δ ∼ = δ, w 0 λ = − ¯ λ Choose an isomorphism τ : w 0 δ ∼ = δ , an hermitian form on the Langlands quotient is given by � v 1 , v 2 � = � v 1 , τ ◦ A ′ ( w 0 , χ δ,λ ) v 2 �

  68. Clebsch-Gordan Coefficients and Principal Series Representations Calculating Intertwining Operators Intertwining Operator for SU (2 , 1) ◮ We can evaluate the intertwining integral explicitly by setting f = D ( j , n ) m 1 , m 2 ,

  69. Clebsch-Gordan Coefficients and Principal Series Representations Calculating Intertwining Operators Intertwining Operator for SU (2 , 1) ◮ We can evaluate the intertwining integral explicitly by setting f = D ( j , n ) m 1 , m 2 , ◮ (Kostant ’62 Johnson-Wallach ’75, Fabec ’91) The long intertwining operator A ( w , χ δ,λ ) acts on each D ( j , n ) � � m 1 , m 2 as a scalar A ( w , χ δ,λ ) m 1 , with a closed form formula: � � A ( w , χ δ,λ ) m 1 = � � � � j − m 1 − λ + δ j + m 1 − λ − δ Γ + 1 Γ + 1 − π 2 2 − λ − 2 ( − 1) λ + δ Γ( λ ) 2 2 � � � � � � � � 1 − λ − δ 1 − λ + δ j − m 1 + λ − δ j + m 1 + λ + δ Γ Γ Γ + 1 Γ + 1 2 2 2 2

  70. Clebsch-Gordan Coefficients and Principal Series Representations Calculating Intertwining Operators Intertwining Operator for SU (2 , 1) ◮ We can evaluate the intertwining integral explicitly by setting f = D ( j , n ) m 1 , m 2 , ◮ (Kostant ’62 Johnson-Wallach ’75, Fabec ’91) The long intertwining operator A ( w , χ δ,λ ) acts on each D ( j , n ) � � m 1 , m 2 as a scalar A ( w , χ δ,λ ) m 1 , with a closed form formula: � � A ( w , χ δ,λ ) m 1 = � � � � j − m 1 − λ + δ j + m 1 − λ − δ Γ + 1 Γ + 1 − π 2 2 − λ − 2 ( − 1) λ + δ Γ( λ ) 2 2 � � � � � � � � 1 − λ − δ 1 − λ + δ j − m 1 + λ − δ j + m 1 + λ + δ Γ Γ Γ + 1 Γ + 1 2 2 2 2 ◮ Normalized intertwining operator: divide by the Harish-Chandra c-function , the normalized intertwining operator becomes a rational function � ( j − m 1 ) � � ( j + m 1 ) � 2 − λ − δ 2 − λ + δ 2 2 � � A ( w , χ δ,λ ) m 1 = � ( j − m 1 ) � � ( j + m 1 ) � 2+ λ − δ 2+ λ + δ 2 2

  71. Clebsch-Gordan Coefficients and Principal Series Representations Calculating Intertwining Operators Intertwining Operator for Sp (4 , R ) ◮ A ( w 0 , λ ) can be factorized into 4 intertwining operators corresponding to simple reflections: A ( w 0 , λ ) = A ( w α 2 , w α 1 w α 2 w α 1 λ ) A ( w α 1 , w α 2 w α 1 λ ) A ( w α 2 , w α 1 λ ) A ( w α 1 , λ ) .

  72. Clebsch-Gordan Coefficients and Principal Series Representations Calculating Intertwining Operators Intertwining Operator for Sp (4 , R ) ◮ A ( w 0 , λ ) can be factorized into 4 intertwining operators corresponding to simple reflections: A ( w 0 , λ ) = A ( w α 2 , w α 1 w α 2 w α 1 λ ) A ( w α 1 , w α 2 w α 1 λ ) A ( w α 2 , w α 1 λ ) A ( w α 1 , λ ) . � λ 1 − λ 2+1 w α 1 � ◮ ( λ 1 , λ 2 ) → ( λ 2 , λ 1 ): [ A ( w α 1 , λ )] j , n m 1 , m 2 = S j , n − − − m 1 , m 2 2

  73. Clebsch-Gordan Coefficients and Principal Series Representations Calculating Intertwining Operators Intertwining Operator for Sp (4 , R ) ◮ A ( w 0 , λ ) can be factorized into 4 intertwining operators corresponding to simple reflections: A ( w 0 , λ ) = A ( w α 2 , w α 1 w α 2 w α 1 λ ) A ( w α 1 , w α 2 w α 1 λ ) A ( w α 2 , w α 1 λ ) A ( w α 1 , λ ) . � λ 1 − λ 2+1 w α 1 � ◮ ( λ 1 , λ 2 ) → ( λ 2 , λ 1 ): [ A ( w α 1 , λ )] j , n m 1 , m 2 = S j , n − − − m 1 , m 2 2 � λ 1+1 w α 2 � ◮ ( λ 2 , λ 1 ) → ( λ 2 , − λ 1 ): [ A ( w α 2 , w α 1 λ )] j , n m 1 , m 2 = T n − − − δ m 1 , m 2 m 1 2

  74. Clebsch-Gordan Coefficients and Principal Series Representations Calculating Intertwining Operators Intertwining Operator for Sp (4 , R ) ◮ A ( w 0 , λ ) can be factorized into 4 intertwining operators corresponding to simple reflections: A ( w 0 , λ ) = A ( w α 2 , w α 1 w α 2 w α 1 λ ) A ( w α 1 , w α 2 w α 1 λ ) A ( w α 2 , w α 1 λ ) A ( w α 1 , λ ) . � λ 1 − λ 2+1 w α 1 � ◮ ( λ 1 , λ 2 ) → ( λ 2 , λ 1 ): [ A ( w α 1 , λ )] j , n m 1 , m 2 = S j , n − − − m 1 , m 2 2 � λ 1+1 w α 2 � ◮ ( λ 2 , λ 1 ) → ( λ 2 , − λ 1 ): [ A ( w α 2 , w α 1 λ )] j , n m 1 , m 2 = T n − − − δ m 1 , m 2 m 1 2 � λ 1+ λ 2+1 w α 1 � ◮ ( λ 2 , − λ 1 ) → ( − λ 1 , λ 2 ): [ A ( w α 1 , w α 2 w α 1 λ )] j , n m 1 , m 2 = S j , n − − − m 1 , m 2 2

  75. Clebsch-Gordan Coefficients and Principal Series Representations Calculating Intertwining Operators Intertwining Operator for Sp (4 , R ) ◮ A ( w 0 , λ ) can be factorized into 4 intertwining operators corresponding to simple reflections: A ( w 0 , λ ) = A ( w α 2 , w α 1 w α 2 w α 1 λ ) A ( w α 1 , w α 2 w α 1 λ ) A ( w α 2 , w α 1 λ ) A ( w α 1 , λ ) . � λ 1 − λ 2+1 w α 1 � ◮ ( λ 1 , λ 2 ) → ( λ 2 , λ 1 ): [ A ( w α 1 , λ )] j , n m 1 , m 2 = S j , n − − − m 1 , m 2 2 � λ 1+1 w α 2 � ◮ ( λ 2 , λ 1 ) → ( λ 2 , − λ 1 ): [ A ( w α 2 , w α 1 λ )] j , n m 1 , m 2 = T n − − − δ m 1 , m 2 m 1 2 � λ 1+ λ 2+1 w α 1 � ◮ ( λ 2 , − λ 1 ) → ( − λ 1 , λ 2 ): [ A ( w α 1 , w α 2 w α 1 λ )] j , n m 1 , m 2 = S j , n − − − m 1 , m 2 2 � λ 2+1 w α 2 � ◮ ( − λ 1 , λ 2 ) → ( − λ 1 , − λ 2 ): [ A ( w α 2 , w α 1 w α 2 w α 1 λ )] j , n m 1 , m 2 = T n − − − δ m 1 , m 2 m 1 2 ◮ Normalization: divide each simple intertwining operator S j , n m 1 , m 2 ( z ) , T n m 1 ( z ) by √ π Γ( z − 1 / 2) , get rational functions S j , n m 1 , m 2 ( z ) , T n m 1 ( z ) such that the corresponding Γ( z ) normalized simple intertwining operator satisfies A ( − λ ) A ( λ ) = 1.

  76. Clebsch-Gordan Coefficients and Principal Series Representations Calculating Intertwining Operators Intertwining Operator for Sp (4 , R ) ◮ A ( w 0 , λ ) can be factorized into 4 intertwining operators corresponding to simple reflections: A ( w 0 , λ ) = A ( w α 2 , w α 1 w α 2 w α 1 λ ) A ( w α 1 , w α 2 w α 1 λ ) A ( w α 2 , w α 1 λ ) A ( w α 1 , λ ) . � λ 1 − λ 2+1 w α 1 � ◮ ( λ 1 , λ 2 ) → ( λ 2 , λ 1 ): [ A ( w α 1 , λ )] j , n m 1 , m 2 = S j , n − − − m 1 , m 2 2 � λ 1+1 w α 2 � ◮ ( λ 2 , λ 1 ) → ( λ 2 , − λ 1 ): [ A ( w α 2 , w α 1 λ )] j , n m 1 , m 2 = T n − − − δ m 1 , m 2 m 1 2 � λ 1+ λ 2+1 w α 1 � ◮ ( λ 2 , − λ 1 ) → ( − λ 1 , λ 2 ): [ A ( w α 1 , w α 2 w α 1 λ )] j , n m 1 , m 2 = S j , n − − − m 1 , m 2 2 � λ 2+1 w α 2 � ◮ ( − λ 1 , λ 2 ) → ( − λ 1 , − λ 2 ): [ A ( w α 2 , w α 1 w α 2 w α 1 λ )] j , n m 1 , m 2 = T n − − − δ m 1 , m 2 m 1 2 ◮ Normalization: divide each simple intertwining operator S j , n m 1 , m 2 ( z ) , T n m 1 ( z ) by √ π Γ( z − 1 / 2) , get rational functions S j , n m 1 , m 2 ( z ) , T n m 1 ( z ) such that the corresponding Γ( z ) normalized simple intertwining operator satisfies A ( − λ ) A ( λ ) = 1. ◮ For the convenience of calculation, our principal series is induced from the character � ǫ 2 � t 1 0 � ǫ 1 � 0 0 � � 1 0 0 0 − 1 0 0 0 0 t 2 0 0 N �→ ( − 1) ( ǫ 1 + ǫ 2 ) δ t λ 1 1 t λ 2 0 − 1 0 0 0 1 0 0 0 0 1 0 0 0 − 1 0 0 0 1 / t 1 0 2 0 0 0 − 1 0 0 0 1 0 0 0 1 / t 2

  77. Clebsch-Gordan Coefficients and Principal Series Representations Calculating Intertwining Operators Intertwining Operator for Sp (4 , R ) ( j , n ) A ( λ ) (0,0) ( 1 ) � � ( λ 1 − 1 )( λ 2 − 1 ) (0,2) ( λ 1+1 )( λ 2+1 ) � � ( λ 1 − 1 )( λ 1 − λ 2 − 1 )( λ 2 − 1 )( λ 1+ λ 2 − 1 ) (1,-2) ( λ 1+1 )( λ 1 − λ 2+1 )( λ 2+1 )( λ 1+ λ 2+1 ) λ 3 1 − λ 2 1 − λ 2 2 λ 1 − λ 1+ λ 2  2 − 1 2 λ 1 ( λ 2 − 1 )  − − ( λ 1+1 )( λ 1 − λ 2+1 )( λ 1+ λ 2+1 ) ( λ 1+1 )( λ 1 − λ 2+1 )( λ 1+ λ 2+1 ) (1,-1)  ( λ 1+1 )( λ 1 − λ 2+1 )( λ 1+ λ 2+1 ) − ( λ 2 − 1 ) ( λ 3 1+ λ 2 1 − λ 2 2 λ 1 − λ 1 − λ 2  2+1 ) 2 λ 1 ( λ 2 − 1 ) − ( λ 1+1 )( λ 1 − λ 2+1 )( λ 2+1 )( λ 1+ λ 2+1 ) − ( λ 2 − 1 ) ( λ 3 1+ λ 2 1 − λ 2 2 λ 1 − λ 1 − λ 2 2+1 )   2 λ 1 ( λ 2 − 1 ) ( λ 1+1 )( λ 1 − λ 2+1 )( λ 2+1 )( λ 1+ λ 2+1 ) − ( λ 1+1 )( λ 1 − λ 2+1 )( λ 1+ λ 2+1 ) (1,1)  λ 3 1 − λ 2 1 − λ 2 2 λ 1 − λ 1+ λ 2  2 λ 1 ( λ 2 − 1 ) 2 − 1 − − ( λ 1+1 )( λ 1 − λ 2+1 )( λ 1+ λ 2+1 ) ( λ 1+1 )( λ 1 − λ 2+1 )( λ 1+ λ 2+1 )

  78. Clebsch-Gordan Coefficients and Principal Series Representations Calculating Intertwining Operators Intertwining Operator for Sp (4 , R ) S j , n ( j , n ) m 1 , m 2 ( z ) (0,0) ( 1 ) ( − z − 1 (1,0) ) z � 3   2 (2 z − 1) (2 z − 1)(2 z +1) 3 4 z ( z +1) 2 z ( z +1) 4 z ( z +1) � 3 � 3    2 (2 z − 1) 2 z 2 − 4 z +3 2 (2 z − 1)  (2,0)   2 z ( z +1) 2 z ( z +1) 2 z ( z +1)   � 3   2 (2 z − 1) (2 z − 1)(2 z +1) 3 4 z ( z +1) 2 z ( z +1) 4 z ( z +1) � 15   2 ( z − 1)(2 z − 1) 15( z − 1) − ( z − 1)(2 z − 1)(2 z +1) − − 4 z ( z +1)( z +2) 2 z ( z +1)( z +2) 4 z ( z +1)( z +2) � 15 � 15   ( z − 1) ( 2 z 2 − 4 z +9 )  2 ( z − 1)(2 z − 1) 2 ( z − 1)(2 z − 1)  (3,0)  − − −  2 z ( z +1)( z +2) 2 z ( z +1)( z +2) 2 z ( z +1)( z +2)   � 15   2 ( z − 1)(2 z − 1) − ( z − 1)(2 z − 1)(2 z +1) 15( z − 1) − − 4 z ( z +1)( z +2) 2 z ( z +1)( z +2) 4 z ( z +1)( z +2)

  79. Clebsch-Gordan Coefficients and Principal Series Representations Calculating Intertwining Operators Intertwining Operator for Sp (4 , R ) (ZZ)The matrices for simple intertwining operators are given by: i − m 1 − m 2 (2 j )! √ π � ( z − 1 / 2) ( − m 1 − m 2 ) � � 2 − j + z − 1 , − j − m 1 , − j + m 2 S j , n m 1 , m 2 ( z ) = 3 F 2 ; 1 − 2 j , − j − m 1 − m 2 + 1 � ( z ) ( j ) c j m 1 c j 1 − 2 j − m 1 + m 2 m 2 Γ 2 2 2 i n − m 1 T n m 1 ( z ) = ) . ( z ) ( m 1 − n ) ( z ) ( − m 1+ n 2 2

  80. Clebsch-Gordan Coefficients and Principal Series Representations Calculating Intertwining Operators Intertwining Operator for Sp (4 , R ) (ZZ)The matrices for A ( λ ) for δ ∈ { (0 , 0) , (1 , 1) } is the constant Laurent series coefficient of [ A ( λ )] j , n m 1 , m 2 ( t 1 , t 2 ) = ( − 1) j + n − ǫ j , n δ ((2 j )!) 2 � j + n − ǫ j , n j + n − ǫ j , n δ δ � − � ( j ) � � ( j ) � � � λ 1 +1 λ 1 +1 λ 1 − λ 2 +1 λ 1 + λ 2 +1 2 2 2 2 2 2 j + m 2 − ǫ j , n − j − m 1+ ǫ j , n � 1 − ǫ j , n � δ δ δ + j − m 2 � ( ) � � ( ) � λ 1 + λ 2 2 λ 1 − λ 2 2 Γ i − m 1 − m 2 2 2 2 � m 2 − n � − m 2 − n c j m 1 c j � 1 − ǫ j , n � δ + j − m 1 � � m 2 λ 2 +1 λ 2 +1 2 2 Γ 2 2 2 − 1 − ǫ j , n − 1+ ǫ j , n + j − m 1 − j + m 2 ǫ j , n − ǫ j , n δ − 2 j δ δ (1 − t 1 ) (1 − t 2 ) δ t t 2 2 1 2 � � � � − j − m 1 , λ 1 − λ 2 − 2 j − 1 − j + m 2 , λ 1+ λ 2 − 2 j − 1 2 F 1 ; t 1 2 F 1 ; t 2 2 2 − 2 j − 2 j  − j + m 1+1+ ǫ j , n − j − n − λ 1+1+ ǫ j , n − j − m 1+ λ 1 − λ 2+ ǫ j , n  ; t 2 1 (1 − t 2 ) δ δ δ  1 , , , 2 2 2 4 F 3  − j + m 2+1+ ǫ j , n − j − n + λ 1+1+ ǫ j , n − j − m 2 − λ 1 − λ 2+ ǫ j , n (1 − t 1 ) t 2 δ δ δ , , +1 2 2 2 2 � where ǫ j , n 0 j − n ≡ δ i mod 2 = 1 j − n �≡ δ i mod 2 . δ

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend