discovering inelastic thermal dark matter
play

Discovering Inelastic Thermal Dark Matter Gordan Krnjaic + Eder - PowerPoint PPT Presentation

Discovering Inelastic Thermal Dark Matter Gordan Krnjaic + Eder Izaguirre, Yonatan Kahn, Matthew Moschella 1703.06881 + Eder Izaguirre, Brian Shuve 1508.03050 Cosmic Visions, UMD March 24, 2017 Thermal Equilibrium Thermal Contact


  1. Discovering Inelastic Thermal Dark Matter Gordan Krnjaic + Eder Izaguirre, Yonatan Kahn, Matthew Moschella 1703.06881 + Eder Izaguirre, Brian Shuve 1508.03050 Cosmic Visions, UMD March 24, 2017

  2. Thermal Equilibrium Thermal Contact Narrows Mass Range Advantage #2: Narrows Mass Range m DM nonthermal nonthermal ∼ 10 − 20 eV ∼ 100 M � m P l ∼ 10 19 GeV < 10 keV < MeV > 100 TeV GeV m Z MeV { too much { too hot Neff / BBN Light DM “WIMPs” Direct Detection (Alan Robinson) Indirect Detection (Alex Drlica-Wagner) Colliders (Yang Bai) 2 18

  3. CMB Bounds for light DM Rules out s -wave annihilation < 10 GeV 10 − 23 Planck TT,TE,EE+lowP WMAP9 CVL Possible interpretations for: For viable models need: 10 − 24 f e ff � σ v � [cm 3 s − 1 ] AMS-02/Fermi/Pamela Fermi GC 10 − 25 (1) p-wave annihilation OR Thermal relic 10 − 26 Planck (2) annihilation shuts off 10 − 27 1303.5076 before CMB 1 10 100 1000 10000 m χ [GeV] 3

  4. CMB Bounds for light DM Rules out s -wave annihilation < 10 GeV 10 − 23 Planck TT,TE,EE+lowP WMAP9 CVL Possible interpretations for: For viable models need: 10 − 24 f e ff � σ v � [cm 3 s − 1 ] AMS-02/Fermi/Pamela Fermi GC 10 − 25 (1) p-wave annihilation OR Thermal relic 10 − 26 Planck (2) annihilation shuts off 10 − 27 1303.5076 before CMB 1 10 100 1000 10000 m χ [GeV] 4

  5. Inelastic DM is CMB Safe Direct Coannihilation into SM SM χ 1 ∆ ⌘ m χ 2 � m χ 1 � eV SM χ 2 Heavier state disappears before z ~1100 n χ 2 ∼ e − ∆ /T No indirect detection No (tree level) direct detection ∆ > 100 keV Easy to build, large couplings, hard to test! iDM direct detection: Weiner, Tucker-Smith arXiv: 0101338

  6. Example Model Four component fermion + familiar dark photon ψγ µ ψ + M ¯ ψ c ψ µ ¯ ψψ + H D ¯ L ⊃ g D A 0 Charge 2 Dirac Vector mass current dark Higgs

  7. Example Model Four component fermion + familiar dark photon ψγ µ ψ + M ¯ ψ c ψ µ ¯ ψψ + H D ¯ L ⊃ g D A 0 Charge 2 Dirac Vector mass current dark Higgs Break dark U(1) with dark Higgs VEV ψ c ψ L mass = M ¯ ψψ + h H D i ¯ Dirac Majorana

  8. Example Model Four component fermion + familiar dark photon ψγ µ ψ + M ¯ ψ c ψ µ ¯ ψψ + H D ¯ L ⊃ g D A 0 Charge 2 Dirac Vector mass current dark Higgs Break dark U(1) with dark Higgs VEV ψ c ψ L mass = M ¯ ψψ + h H D i ¯ Dirac Majorana Diagonalizing to mass basis splits Dirac components (pseudo-Dirac) ψ ≡ ( ξ , η † ) ( χ 1 , χ 2 ) , ∆ ≡ m 2 − m 1 int. eigenstates mass eigenstates

  9. Example Model Vector current is now off-diagonal in mass basis χ 2 γ µ χ 1 + h.c. L ⊃ g D A 0 µ ¯ As before, define relic density variable e g D χ 1 χ e + ✓ m 1 ◆ 4 y ≡ ✏ 2 ↵ D m A 0 γ A 0 χ e � Different “y” for each ∆ χ 2 ✏ freeze out is subtle… direct annihilation m A 0 > m 1 + m 2

  10. Inelastic Novelties f χ 1 Coannihilation A 0 f χ 2 χ 1 χ 2 Upscahttering & A 0 Downscattering e � e � χ 1 χ 2 Excited State Decays · e + Γ ( � 2 → � 1 e + e − ) = 4 ✏ 2 ↵↵ D ∆ 5 A 0⇤ 15 ⇡ m 4 A 0 e �

  11. Coannihilation Relics iDM Thermal Freeze - Out 10 - 1 10 - 5 number density 10 - 9 Y = n / s Y 1 10 - 13 Y 2 Y 2 ( 0 ) Y 1 ( 0 ) 10 - 17 10 20 30 40 50 60 70 t i m e x = m 2 / T Heavier state feels Boltzmann suppression earlier Need larger rate to compensate!

  12. Vary Mass Splitting Thermal Coannihilation, m A ' = 3 m 1 10 - 6 10 - 7 10 - 8 y = ϵ 2 α D ( m 1 / m A ' ) 4 ∆ = 0 . 4 m 1 10 - 9 10 - 10 10 - 11 ∆ = 0 . 1 m 1 10 - 12 10 - 13 10 - 14 10 - 15 10 - 16 10 2 1 10 m 1 [ MeV ]

  13. Beam Dump Signals Detector Target/Dump χ i e/p � ! Beam e/p χ 1 χ 1 e/p χ j χ i χ 2 χ 2 A � Z and/or f + A � A � γ f � T T p π 0 , η χ 1 A � Z χ 2 Proton Electron LSND E137 BDX MiniBooNE Morrissey, Spray 1402.4817 Others possible (SeaQuest, T2K, DUNE…) Kim Park Shin 1612.06867 BdNMC deNiverville, Chen, Pospelov, Ritz 1609.01770

  14. Missing Energy/Momentum can then decay promptly inside the detector to deposit a visible signal. ECAL/HCAL Active Target (ECAL/HCAL) Tracker Target e − e − e − − e − − χ 1 χ 2 χ 1 χ 2 → → Invisible Invisible LDMX NA64 e � χ 1 e � χ 2 A � Z Heavier state decays outside veto region Signal looks like missing energy/momentum May also be sensitive to the decay!

  15. Generically Macroscopic Decays Rest Frame Decay Length χ 2 → χ 1 f f , y = y relic 10 9 10 8 10 7 Δ = 0.1 m 1 10 6 c τ [ y relic / y ] [ cm ] 10 5 Δ = 0.2 m 1 10 4 10 3 Δ = 0.4 m 1 10 2 10 1 10 0 10 - 1 10 - 2 10 2 10 3 10 m 2 [ MeV ]

  16. Tiny Splitting ~ 1% Thermal iDM, Δ = 0.01 m 1 , m A ' = 3 m 1 , α D = 0.1 LEP 10 - 6 N eff , ( model dep. ) 10 - 7 ( g - 2 ) μ ( g - 2 ) μ 10 - 8 MiniBooNE y = ϵ 2 α D ( m 1 / m A ' ) 4 scatter BaBar mono γ 10 - 9 → 10 - 10 E137 scatter 10 - 11 Belle II 10 - 12 LSND y t i s scatter n e D c i l 10 - 13 e R BDX scatter 10 - 14 LDMX 10 - 15 missing mom. 10 - 16 10 2 10 3 1 10 m 1 [ MeV ] Similar to plots from plenaries

  17. Small Splitting ~ 10% Thermal iDM, Δ = 0.1 m 1 , m A ' = 3 m 1 , α D = 0.1 LEP 10 - 6 → 10 - 7 BaBar mono γ 10 - 8 y = ϵ 2 α D ( m 1 / m A ' ) 4 E137 N eff , ( model dep. ) ( g - 2 ) μ decay 10 - 9 10 - 10 E137 scatter BDX 10 - 11 decay 10 - 12 LSND scatter LSND MiniBooNE 10 - 13 decay decay BDX scatter 10 - 14 Relic Density 10 - 15 LDMX missing mom. 10 - 16 10 2 10 3 1 10 m 1 [ MeV ] Thermal iDM, Δ = 0.3 m , m = 3 m , α = 0.1

  18. Large Splitting ~ 40% m 1 [ MeV ] Thermal iDM, Δ = 0.4 m 1 , m A ' = 3 m 1 , α D = 0.1 LEP 10 - 6 N eff , ( model dep. ) BaBar 10 - 7 mono γ 10 - 8 Relic Density y = ϵ 2 α D ( m 1 / m A ' ) 4 ( g - 2 ) μ 10 - 9 E137 10 - 10 scatter E137 decay 10 - 11 LSND scatter 10 - 12 BDX decay 10 - 13 BDX 10 - 14 MiniBooNE LSND scatter decay decay 10 - 15 LDMX → missing mom. 10 - 16 10 2 10 3 1 10 m 1 [ MeV ] Target moves up, bounds/projections move down

  19. Vary DM/Mediator Coupling Thermal iDM, Δ = 0.1 m 1 , m A' = 3 m 1 , α D = α Thermal iDM, Δ = 0.1 m 1 , m A ' = 3 m 1 , α D = 0.1 LEP 10 - 6 10 - 6 → → LEP 10 - 7 10 - 7 BaBar mono γ BaBar 10 - 8 10 - 8 N eff , ( model dep. ) E137 mono γ y = ϵ 2 α D ( m 1 / m A ' ) 4 y = ϵ 2 α D ( m 1 / m A ' ) 4 E137 N eff , ( model dep. ) decay ( g - 2 ) μ decay 10 - 9 10 - 9 ( g - 2 ) μ 10 - 10 10 - 10 E137 scatter Relic Density BDX E137 10 - 11 10 - 11 decay scatter BDX decay 10 - 12 LSND 10 - 12 LSND scatter scatter LSND MiniBooNE 10 - 13 10 - 13 decay decay BDX scatter LSND MiniBooNE 10 - 14 10 - 14 Relic BDX decay decay scatter Density 10 - 15 LDMX 10 - 15 LDMX missing mom. missing mom. 10 - 16 10 - 16 10 2 10 3 1 10 10 2 10 3 1 10 m 1 [ MeV ] m 1 [ MeV ] Thermal iDM, Δ = 0.3 m , m = 3 m , α = 0.1

  20. Vary DM/Mediator Mass Ratio m 1 [ MeV ] Thermal iDM, Δ = 0.1 m 1 , m A' = 10 m 1 , α D = 0.1 Thermal iDM, Δ = 0.1 m 1 , m A ' = 3 m 1 , α D = 0.1 LEP 10 - 6 10 - 6 N eff , ( model dep. ) → 10 - 7 E137 10 - 7 BaBar mono γ LEP decay 10 - 8 10 - 8 y = ϵ 2 α D ( m 1 / m A ' ) 4 E137 y = ϵ 2 α D ( m 1 / m A ' ) 4 N eff , ( model dep. ) BaBar mono γ ( g - 2 ) μ decay 10 - 9 10 - 9 10 - 10 10 - 10 E137 → ( g - 2 ) μ scatter BDX BDX 10 - 11 10 - 11 decay decay y t i s n e D 10 - 12 c LSND 10 - 12 i l e R scatter E137 scatter LSND MiniBooNE 10 - 13 10 - 13 decay decay BDX LSND MiniBooNE scatter decay decay LSND scatter 10 - 14 Relic 10 - 14 Density BDX 10 - 15 LDMX 10 - 15 scatter LDMX missing mom. missing mom. 10 - 16 10 - 16 10 2 10 3 1 10 10 2 10 3 1 10 m 1 [ MeV ] m 1 [ MeV ] Thermal iDM, Δ = 0.3 m , m = 3 m , α = 0.1

  21. Above the GeV Scale? � , ` + ` − . . . DM − c ⌧ DM ∗ ← Hadron Collider DM DM ∗ p J + 6 E T + ` + ` − p j � , ` + ` − . . . DM − c ⌧ DM ∗ ← DM Lepton Collider DM ∗ e + � + 6 E + ` + ` − e − � Izaguirre, GK, Shuve 1508.03050

  22. Collider Complementarity Small Splitting ~ 10% Thermal iDM, Δ = 0.1 m 1 , m A ' = 3 m 1 , α D = 0.1 LEP 10 - 6 BaBar N eff , ( model dep. ) 10 - 7 displaced y = ϵ 2 α D ( m 1 / m A ' ) 4 10 - 8 E137 LHC ( g - 2 ) μ decay 10 - 9 displaced y t i s n e E137 D 10 - 10 c i l Belle II scatter e R mono γ 10 - 11 LSND scatter 10 - 12 BDX MiniBooNE decay decay 10 - 13 LSND BDX decay → 10 - 14 scatter LDMX 10 - 15 missing mom. 10 2 10 3 10 4 10 5 1 10 m 1 [ MeV ]

  23. Collider Complementarity Large Splitting ~ 40% m 1 [ MeV ] Thermal iDM, Δ = 0.4 m 1 , m A ' = 3 m 1 , α D = 0.1 LEP 10 - 6 N eff , ( model dep. ) LHC 10 - 7 y = ϵ 2 α D ( m 1 / m A ' ) 4 l + l - + MET ( g - 2 ) μ 10 - 8 10 - 9 y t i s n e E137 D LHC E137 10 - 10 c BaBar i BDX l scatter e R displaced decay displaced decay 10 - 11 LSND scatter 10 - 12 BDX scatter 10 - 13 → 10 - 14 LDMX MiniBooNE missing mom. decay 10 - 15 LSND decay 10 2 10 3 10 4 10 5 1 10 m 1 [ MeV ]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend