classifying space for proper actions for groups admitting
play

Classifying space for proper actions for groups admitting a strict - PowerPoint PPT Presentation

Classifying space for proper actions for groups admitting a strict fundamental domain Tomasz Prytu la 04.04.2018 joint work with Nansen Petrosyan joint work with Nansen Petrosyan Outline joint work with Nansen Petrosyan Outline 1


  1. Classifying space for proper actions Goal Construct possibly simple models for EG of small dimension = vcd G - virtual cohomological dimension cd G - Bredon cohomological dimension Homology H G ∗ ( EG ) ◮ Baum-Connes conjecture ∼ = → K ∗ ( C ∗ K G ∗ ( EG ) − r ( G )) ◮ Atiyah-Segal Completion theorem (L¨ uck-Oliver ’01) Example SL (2 , Z ) � properly by isometries on H 2 ⇒ H 2 ≃ ESL (2 , Z )

  2. Classifying space for proper actions Goal Construct possibly simple models for EG of small dimension = vcd G - virtual cohomological dimension cd G - Bredon cohomological dimension Homology H G ∗ ( EG ) ◮ Baum-Connes conjecture ∼ = → K ∗ ( C ∗ K G ∗ ( EG ) − r ( G )) ◮ Atiyah-Segal Completion theorem (L¨ uck-Oliver ’01) Example SL (2 , Z ) � properly by isometries on H 2 ⇒ H 2 ≃ ESL (2 , Z ) SL (2 , Z ) ∼ = Z / 4 ∗ Z / 2 Z / 6

  3. Classifying space for proper actions Goal Construct possibly simple models for EG of small dimension = vcd G - virtual cohomological dimension cd G - Bredon cohomological dimension Homology H G ∗ ( EG ) ◮ Baum-Connes conjecture ∼ = → K ∗ ( C ∗ K G ∗ ( EG ) − r ( G )) ◮ Atiyah-Segal Completion theorem (L¨ uck-Oliver ’01) Example SL (2 , Z ) � properly by isometries on H 2 ⇒ H 2 ≃ ESL (2 , Z ) SL (2 , Z ) ∼ = Z / 4 ∗ Z / 2 Z / 6 � properly on a tree

  4. Classifying space for proper actions Goal Construct possibly simple models for EG of small dimension = vcd G - virtual cohomological dimension cd G - Bredon cohomological dimension Homology H G ∗ ( EG ) ◮ Baum-Connes conjecture ∼ = → K ∗ ( C ∗ K G ∗ ( EG ) − r ( G )) ◮ Atiyah-Segal Completion theorem (L¨ uck-Oliver ’01) Example SL (2 , Z ) � properly by isometries on H 2 ⇒ H 2 ≃ ESL (2 , Z ) SL (2 , Z ) ∼ = Z / 4 ∗ Z / 2 Z / 6 � properly on a tree ⇒ Tree ≃ ESL (2 , Z )

  5. Davis complex for a Coxeter group

  6. Davis complex for a Coxeter group Right-Angled Coxeter groups

  7. Davis complex for a Coxeter group Right-Angled Coxeter groups Let L be a finite, flag simplicial complex.

  8. Davis complex for a Coxeter group Right-Angled Coxeter groups Let L be a finite, flag simplicial complex.

  9. Davis complex for a Coxeter group Right-Angled Coxeter groups Let L be a finite, flag simplicial complex.

  10. Davis complex for a Coxeter group Right-Angled Coxeter groups Let L be a finite, flag simplicial complex. W = W L = � s i ∈ V ( L ) | s 2 i = e , s i s j = s j s i iff { s i , s j } ∈ E ( L ) �

  11. Davis complex for a Coxeter group Right-Angled Coxeter groups Let L be a finite, flag simplicial complex. W = W L = � s i ∈ V ( L ) | s 2 i = e , s i s j = s j s i iff { s i , s j } ∈ E ( L ) � Examples L W L

  12. Davis complex for a Coxeter group Right-Angled Coxeter groups Let L be a finite, flag simplicial complex. W = W L = � s i ∈ V ( L ) | s 2 i = e , s i s j = s j s i iff { s i , s j } ∈ E ( L ) � Examples ∆ n L W L

  13. Davis complex for a Coxeter group Right-Angled Coxeter groups Let L be a finite, flag simplicial complex. W = W L = � s i ∈ V ( L ) | s 2 i = e , s i s j = s j s i iff { s i , s j } ∈ E ( L ) � Examples ∆ n L ( Z / 2) n +1 W L

  14. Davis complex for a Coxeter group Right-Angled Coxeter groups Let L be a finite, flag simplicial complex. W = W L = � s i ∈ V ( L ) | s 2 i = e , s i s j = s j s i iff { s i , s j } ∈ E ( L ) � Examples ∆ n (∆ n ) (0) L ( Z / 2) n +1 W L

  15. Davis complex for a Coxeter group Right-Angled Coxeter groups Let L be a finite, flag simplicial complex. W = W L = � s i ∈ V ( L ) | s 2 i = e , s i s j = s j s i iff { s i , s j } ∈ E ( L ) � Examples ∆ n (∆ n ) (0) L ( Z / 2) n +1 ( Z / 2) ∗ ( n +1) W L

  16. Davis complex for a Coxeter group Right-Angled Coxeter groups Let L be a finite, flag simplicial complex. W = W L = � s i ∈ V ( L ) | s 2 i = e , s i s j = s j s i iff { s i , s j } ∈ E ( L ) � Examples ∆ n (∆ n ) (0) L 1 ⊔ L 2 L ( Z / 2) n +1 ( Z / 2) ∗ ( n +1) W L

  17. Davis complex for a Coxeter group Right-Angled Coxeter groups Let L be a finite, flag simplicial complex. W = W L = � s i ∈ V ( L ) | s 2 i = e , s i s j = s j s i iff { s i , s j } ∈ E ( L ) � Examples ∆ n (∆ n ) (0) L 1 ⊔ L 2 L ( Z / 2) n +1 ( Z / 2) ∗ ( n +1) W L 1 ∗ W L 2 W L

  18. Davis complex for a Coxeter group Right-Angled Coxeter groups Let L be a finite, flag simplicial complex. W = W L = � s i ∈ V ( L ) | s 2 i = e , s i s j = s j s i iff { s i , s j } ∈ E ( L ) � Examples ∆ n (∆ n ) (0) L 1 ⊔ L 2 L 1 ∗ L 2 L ( Z / 2) n +1 ( Z / 2) ∗ ( n +1) W L 1 ∗ W L 2 W L

  19. Davis complex for a Coxeter group Right-Angled Coxeter groups Let L be a finite, flag simplicial complex. W = W L = � s i ∈ V ( L ) | s 2 i = e , s i s j = s j s i iff { s i , s j } ∈ E ( L ) � Examples ∆ n (∆ n ) (0) L 1 ⊔ L 2 L 1 ∗ L 2 L ( Z / 2) n +1 ( Z / 2) ∗ ( n +1) W L 1 ∗ W L 2 W L 1 × W L 2 W L

  20. Davis complex for a Coxeter group Right-Angled Coxeter groups Let L be a finite, flag simplicial complex. W = W L = � s i ∈ V ( L ) | s 2 i = e , s i s j = s j s i iff { s i , s j } ∈ E ( L ) � Examples ∆ n (∆ n ) (0) L 1 ⊔ L 2 L 1 ∗ L 2 L ( Z / 2) n +1 ( Z / 2) ∗ ( n +1) W L 1 ∗ W L 2 W L 1 × W L 2 W L EW = Σ W = Σ - Davis complex

  21. Davis complex for a Coxeter group

  22. Davis complex for a Coxeter group Example

  23. Davis complex for a Coxeter group Example D ∞ = W L where

  24. Davis complex for a Coxeter group Example s t D ∞ = W L where L =

  25. Davis complex for a Coxeter group Example s t L ′ = D ∞ = W L where

  26. Davis complex for a Coxeter group Example s t s e t L ′ = CL ′ = D ∞ = W L where

  27. Davis complex for a Coxeter group Example s t s e t L ′ = CL ′ = D ∞ = W L where Σ D ∞ ∼ = R

  28. Davis complex for a Coxeter group Example s t s e t L ′ = CL ′ = D ∞ = W L where Σ D ∞ ∼ = R s e t t e s s e t t e s s e t t e s s e st t ts tst

  29. Davis complex for a Coxeter group Example s t s e t L ′ = CL ′ = D ∞ = W L where Σ D ∞ ∼ = R s e t t e s s e t t e s s e t t e s s e st t ts tst

  30. Davis complex for a Coxeter group Example s t s e t L ′ = CL ′ = D ∞ = W L where Σ D ∞ ∼ = R s e t t e s s e t t e s s e t t e s s e st t ts tst

  31. Davis complex for a Coxeter group Example s t s e t L ′ = CL ′ = D ∞ = W L where Σ D ∞ ∼ = R s e t t e s s e t t e s s e t t e s s e st t ts tst

  32. Davis complex for a Coxeter group Example s t s e t L ′ = CL ′ = D ∞ = W L where s Σ D ∞ ∼ = R s e t t e s s e t t e s s e t t e s s e st t ts tst

  33. Davis complex for a Coxeter group Example s t s e t L ′ = CL ′ = D ∞ = W L where s t Σ D ∞ ∼ = R s e t t e s s e t t e s s e t t e s s e st t ts tst

  34. Davis complex for a Coxeter group Example s t s e t L ′ = CL ′ = D ∞ = W L where s t Σ D ∞ ∼ = R s e t t e s s e t t e s s e t t e s s e st t ts tst

  35. Davis complex for a Coxeter group Example s t s e t L ′ = CL ′ = D ∞ = W L where s t Σ D ∞ ∼ = R s e t t e s s e t t e s s e t t e s s e st t ts tst Σ W L = W L × CL ′ / ∼

  36. Davis complex for a Coxeter group Example s t s e t L ′ = CL ′ = D ∞ = W L where s t Σ D ∞ ∼ = R s e t t e s s e t t e s s e t t e s s e st t ts tst Σ W L = W L × CL ′ / ∼ Action of W on Σ W

  37. Davis complex for a Coxeter group Example s t s e t L ′ = CL ′ = D ∞ = W L where s t Σ D ∞ ∼ = R s e t t e s s e t t e s s e t t e s s e st t ts tst Σ W L = W L × CL ′ / ∼ Action of W on Σ W ◮ W � Σ W by w · [ w ′ , x ] = [ ww ′ , x ]

  38. Davis complex for a Coxeter group Example s t s e t L ′ = CL ′ = D ∞ = W L where s t Σ D ∞ ∼ = R s e t t e s s e t t e s s e t t e s s e st t ts tst Σ W L = W L × CL ′ / ∼ Action of W on Σ W ◮ W � Σ W by w · [ w ′ , x ] = [ ww ′ , x ] ◮ Σ W / W = [ e , CL ′ ] = CL ′ - strict fundamental domain

  39. Davis complex for a Coxeter group Example s t s e t L ′ = CL ′ = D ∞ = W L where s t Σ D ∞ ∼ = R s e t t e s s e t t e s s e t t e s s e st t ts tst Σ W L = W L × CL ′ / ∼ Action of W on Σ W ◮ W � Σ W by w · [ w ′ , x ] = [ ww ′ , x ] ◮ Σ W / W = [ e , CL ′ ] = CL ′ - strict fundamental domain ◮ Stabilisers =

  40. Davis complex for a Coxeter group Example s t s e t L ′ = CL ′ = D ∞ = W L where s t Σ D ∞ ∼ = R s e t t e s s e t t e s s e t t e s s e st t ts tst Σ W L = W L × CL ′ / ∼ Action of W on Σ W ◮ W � Σ W by w · [ w ′ , x ] = [ ww ′ , x ] ◮ Σ W / W = [ e , CL ′ ] = CL ′ - strict fundamental domain ◮ Stabilisers = conjugates of subgroups � s 1 , . . . , s n � ⊂ W where { s 1 , . . . , s n } spans a simplex of L

  41. Davis complex for a Coxeter group Example s t s e t L ′ = CL ′ = D ∞ = W L where s t Σ D ∞ ∼ = R s e t t e s s e t t e s s e t t e s s e st t ts tst Σ W L = W L × CL ′ / ∼ Action of W on Σ W ◮ W � Σ W by w · [ w ′ , x ] = [ ww ′ , x ] ◮ Σ W / W = [ e , CL ′ ] = CL ′ - strict fundamental domain ◮ Stabilisers = conjugates of subgroups � s 1 , . . . , s n � ⊂ W where { s 1 , . . . , s n } spans a simplex of L ⇒ proper action

  42. Davis complex for a Coxeter group Example

  43. Davis complex for a Coxeter group Example L s 1 s 3 s 2

  44. Davis complex for a Coxeter group Example W L ∼ L = ( Z / 2 × Z / 2) ∗ Z / 2 s 1 s 3 s 2

  45. Davis complex for a Coxeter group Example W L ∼ L = ( Z / 2 × Z / 2) ∗ Z / 2 s 1 s 3 s 2 CL ′ s 1 s 3 s 2

  46. Davis complex for a Coxeter group Example W L ∼ L = ( Z / 2 × Z / 2) ∗ Z / 2 s 1 s 3 Σ W L s 2 CL ′ s 1 CL ′ s 3 s 2

  47. Davis complex for a Coxeter group Example W L ∼ L = ( Z / 2 × Z / 2) ∗ Z / 2 s 1 s 3 Σ W L s 2 CL ′ s 1 CL ′ s 3 s 2 s 1

  48. Davis complex for a Coxeter group Example W L ∼ L = ( Z / 2 × Z / 2) ∗ Z / 2 s 1 s 3 Σ W L s 2 CL ′ s 1 CL ′ s 2 s 3 s 2 s 1

  49. Davis complex for a Coxeter group Example W L ∼ L = ( Z / 2 × Z / 2) ∗ Z / 2 s 1 s 3 Σ W L s 2 CL ′ s 1 CL ′ s 2 s 3 s 2 s 3 s 1

  50. Davis complex for a Coxeter group Example W L ∼ L = ( Z / 2 × Z / 2) ∗ Z / 2 s 1 s 3 Σ W L s 2 CL ′ s 1 CL ′ s 3 s 2

  51. Davis complex for a Coxeter group Theorem (Moussong)

  52. Davis complex for a Coxeter group Theorem (Moussong) Σ W supports a W –invariant CAT (0) metric.

  53. Davis complex for a Coxeter group Theorem (Moussong) Σ W supports a W –invariant CAT (0) metric. Therefore Σ W = EW .

  54. Davis complex for a Coxeter group Theorem (Moussong) Σ W supports a W –invariant CAT (0) metric. Therefore Σ W = EW . dim (Σ W L ) = dim ( CL ′ ) = dim ( L ) + 1

  55. Davis complex for a Coxeter group Theorem (Moussong) Σ W supports a W –invariant CAT (0) metric. Therefore Σ W = EW . dim (Σ W L ) = dim ( CL ′ ) = dim ( L ) + 1 Example

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend