ckkw in heavy flavour production and decay
play

CKKW in Heavy Flavour Production and Decay 1 Stefan Hche - PowerPoint PPT Presentation

CKKW in Heavy Flavour Production and Decay 1 Stefan Hche Institute for Particle Physics and Phenomenology Durham University 1 for Sherpa: Tanju Gleisberg, SH, Frank Krauss, Steffen Schumann, Marek Schnherr, Frank Siegert & Jan


  1. CKKW in Heavy Flavour Production and Decay 1 Stefan Höche Institute for Particle Physics and Phenomenology Durham University 1 for Sherpa: Tanju Gleisberg, SH, Frank Krauss, Steffen Schumann, Marek Schönherr, Frank Siegert & Jan Winter

  2. PS In Heavy Quark Production In quasi-collinear limit (b heavy quark) ME factorises c z t 8 πα s a | M ( b , c , . . . , n ) | 2 → | M ( a , . . . , n ) | 2 b P a → bc ( z ) t − m 2 a t − m 2 Virtuality ordered PS evolution variable changes to t a Splitting functions become P ab ( z ) those for massive quarks Nucl. Phys. B627(2002)189 � 1 + z 2 2z ( 1 − z ) m 2 � C F q 2 + ( 1 − z ) 2 m 2 1 − z − 1 − 2z ( 1 − z ) + 2z ( 1 − z ) m 2 � � T R q 2 + m 2 Cross-check: 2- and 3-jet fraction in , PS vs. ME, weighted e + e − → t¯ t with NLL Sudakov form factors Phys. Lett. B576(2003)135 Stefan Höche, LHC-D QCD+EW, 5.7.2007

  3. PS In Heavy Quark Production PS in production PS in decay P tt ( z ) P tt ( z ) t t’ b+X b’+X’ t t’ W W’ On-shell daughter partons Off-shell daughter partons New decay kinematics via Decay kinematics need ! Lorentz transformation to be reconstructed Choice: Boost into Choice: Reconstruct in cms new (daughter) cms of decayed quark, such FSR-like situation that is preserved → → p / | p | Evolution stops at on-shell ISR-like situation mass of heavy quark Evolution stops at width of decaying heavy quark Stefan Höche, LHC-D QCD+EW, 5.7.2007

  4. Brief Review: Why CKKW ? Matrix Elements Parton Showers 2 2 2 + u u t + t Exact to fixed order d t t d z α s ( t , z ) � d σ n + 1 = d σ n ⊗ P a → bc ( z ) 2 π in running coupling a ∈ q , g Include all quantum Resum all (next-to) leading interferences logarithms to all orders Calculable only for low Interference effects only FS multiplicity (n ≤ 6-8) through angular ordering Basic idea of CKKW: Combine both approaches to have Good description of hard/wide angle radiation (ME) Correct intrajet evolution (PS) JHEP 08(2002)015; JHEP 11(2001)063 Stefan Höche, LHC-D QCD+EW, 5.7.2007

  5. CKKW & Heavy Flavours Narrow width approximation full ME factorises W − into production and decay parts ¯ ¯ b t A ( n ) = A ( n prod ) A ( n i ) Schematically: � ⊗ prod dec , i i ∈ decays t W + Generator setup: AMEGIC++ provides decay chain treatment to b project onto relevant Feynman diagrams Intermediate particle masses distributed according to Breit-Wigner APACIC++ provides production & decay shower off heavy partons CKKW is applied separately and completely independent within production and each decay Yields all combinations of parton multiplicities in ME up to , i.e. 1-0-0, 0-1-0, ... in � e + e − → t¯ N max , prod ⊗ N max , dec i t i ∈ decays Stefan Höche, LHC-D QCD+EW, 5.7.2007

  6. + - Top production in E E + - Sanity check of procedure: Correlations in e e Reconstructed top mass Four particle plane angle Stefan Höche, LHC-D QCD+EW, 5.7.2007

  7. + - Top production in E E + - Sanity check of procedure: Jet differential rates in e e Q - variation in production Q - variation in decays cut cut Stefan Höche, LHC-D QCD+EW, 5.7.2007

  8. Top Pair production @ LHC t¯ Application: production at the LHC t of pair t¯ of first extra jet t p ⊥ η Stefan Höche, LHC-D QCD+EW, 5.7.2007

  9. Top Pair production @ LHC Cross-check: Variation of separation cut in production subprocess Differential 3 2 jet rate of first extra jet p ⊥ Stefan Höche, LHC-D QCD+EW, 5.7.2007

  10. Top Pair production @ LHC Cross-check: Variation of separation cut in decay subprocesses Differential 3 2 jet rate of first extra jet p ⊥ Stefan Höche, LHC-D QCD+EW, 5.7.2007

  11. Updates on Sherpa can be found on WWW.sherpa-mc.de E-mail us on info@sherpa-mc.de

  12. CKKW Cooking Recipe JHEP 0111 (2001) 063 Define jet resolution parameter Q (Q-jet measure) cut JHEP 0208 (2002) 015 divide phase space into regions of jet production (ME) and jet evolution (PS) Select final state multiplicity and kinematics Q cut according to σ ‘above’ Q cut ∆ q ( Q cut ,Q 1 ) α s ( Q 1) ∆ q ( Q cut ,µH ) KT-cluster backwards (construct PS-tree) α s ( Q cut) ∆ q ( Q cut ,Q 1) and identify core process ∆ g ( Q cut ,Q 1 ) µ H Reweight ME to obtain exclusive samples at Q cut Start the parton shower at the hard scale q ( Q cut ,µ H ) ∆ ¯ Veto all PS emissions harder than Q ME Domain PS Domain cut This yields the correct jet rates ! Simple example: 2-jet rate in ee qq � 2 ∆( q, µ hard ) � R 2 ( q ) = ∆( Q cut , µ hard ) ∆( Q cut , µ hard ) Stefan Höche, MCnet 07, 17.4.2007

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend