chitra rangan department of physics university of windsor
play

ChitraRangan DepartmentofPhysics,UniversityofWindsor - PowerPoint PPT Presentation

ChitraRangan DepartmentofPhysics,UniversityofWindsor Windsor,Ontario,Canada Windsor, Ontario Canada - The rose city Framework System:Rydbergwavepacket(RWP):


  1. Chitra
Rangan
 Department
of
Physics,
University
of
Windsor
 Windsor,
Ontario,
Canada


  2. Windsor, Ontario Canada - The rose city

  3. Framework
 • System:
Rydberg
wave
packet
(RWP):

 SuperposiCon
of
energy
eigenstates
exhibiCng

 Keplerian
moCon
about
a
nucleus
(‐1/r
potenCal).
 Dynamical
Cme
(driK/field‐free
evoluCon)
~10ps.

 • Control:
Terahertz
half‐cycle
pulse
(HCP):
 Approximately
an
impulse.
Controls
(~1ps)
are
much
 faster
than
the
driK.
 D.
You,
R.
R.
Jones,
D.R.
Dykaar,
and
P.H.
Bucksbaum,
OpCcs
LeWers
18,
290
(1993).
 • Decoherence:
 Negligible
sources
of
decoherence.

Coherence
Cme
 ~6ns.
Coherent
evoluCon.


  4. Outline
 • IntroducCon
to
RWPs
&
HCPs
 • Case
1:
Control
with
single
HCP
 – OpCmal
control
 • If
Cme
permits…
Control
with
two
kicks
 • Case
2a:
Control
can
be
treated
semiclassically
 – New
method
for
determining
the
width
of
an
RWP
 • Case
2b:
Control
can
only
be
treated
quantum
 mechanically
 – Removing
&
inserCng
coherences
from
a
subspace


  5. 3D
Coulomb
problem 
 ψ = − ∇ 2 ψ − 1 i ˙ r ψ 2 • Spherical
coordinates
 • SeparaCon
of
variables
 • Energy
eigenstates:
 ψ nlm ( r , θ , φ ) = R nl ( r ) P l ( θ ) F m ( φ ) ~
Laguerre
polynomials
 Spherical
harmonics
Y lm 
 H ψ nlm ( r , θ , φ ) = E n ψ nlm ( r , θ , φ ) = 1 2 n 2 ψ nlm ( r , θ , φ )

  6. Energy
level
diagram 
 E n = − 1 Δ E n = 1 2 n 2 ; n 3

  7. The
state
vector
is
a
coherent
superposiCon
of
highly
excited
states
of
 a
one
electron
atom
–
a
Rydberg
wave
packet
 ∑ | ψ 〉 = c n | φ n 〉 n n=15‐30

Rydberg
 The
energy
level
spacings
 states
 are
~
THz
 Dynamical
Cme
scales
~
 h ν 10
ps
 c n e − iE n t | φ n 〉 ∑ | ψ ( t ) 〉 = launch
state
 n Typical
states:
n~25
states
of
an
alkali
atom


  8. SculpBng
a
Rydberg
wave
packet
 ∑ | ψ 〉 = c n | φ n 〉 n T. C. Weinacht, J. Ahn, and P. H. Bucksbaum, Phys. Rev. Lett. 80, 5508 (1998).

  9. Bound
and
conBnuum
wave
packets
 c n e − iE n t /  | φ n 〉 c ( E ) e − iEt /  | φ ( E ) 〉 ∑ ∫ | ψ ( t ) 〉 = | ψ ( t ) 〉 = dE n

  10. Control:
THz
Half‐cycle
pulse
 • Unipolar
electromagneCc
field
 • FWHM
~0.5ps
 1.0
 1.0
 2.0
 • Short
unipolar
lobe,
then
long
negaCve
tail


  11. Impulse
approximaBon
 • When
T HCP 
<<
T dynamical 
 • HCP
~
‘impulse’
in
direcCon
of
polarizaCon
 • Atoms
do
not
feel
effect
of
negaCve
tail
 • Can
transfer
momentum
to
a
free
electron



  12. Control
equaBon 
 , t ) = − ∇ 2 ψ (  (  r ψ (  r , t ) − 1 i ˙ r r , t ) ψ 2 1 δ ( t 1 )  1 + Q 2 δ ( t 2 )  ) ψ (  ( r ⋅ ˆ r ⋅ ˆ + Q n n r , t ) 2 • We
assume
the
first
kick
Q 1
 is
along
the
quanCzaCon 
axis
(z‐axis)
–
2D
problem
 • The
second
kick
can
either
be
along
the
(z‐axis)
–
sCll 
a
2D
problem;
or
make
some
angle
to
the
z‐axis
–
3D 
problem
 • Comparisons
to
experiments
in
alkali
atoms, 
potenCal
slightly
different
from
Coulomb


  13. Numerical
approaches 
 • Truncated
basis
of
spherical
harmonics
 1. EssenCal
states
basis
–
energy
truncaCon 
useful
for
studying
bound
state‐to‐state 
problems
 – If
impulse
is
in
the
z‐direcCon
 – Numerical
diagonalizaCon
of
impulse
operator
 Rangan
and
Murray,
Phys.
Rev.
A
 72 ,
 053409
(2005) 


  14. Kicks
in
arbitrary
direcBons
 • Perpendicular
kicks,
impulse
delivered
along
 the
arbitrary
axis
 • 
Rotate
the
desired
axis
onto
the
z‐axis,
kick
 along
the
new
z,
and
then
rotate
back
using
D
 –
matrices


  15. Numerical
approaches
 2. RepresentaCon
using
truncated
radial
grid
and
 spherical
harmonics
(r‐l
basis)
 – Free
evoluCon
by
implicit
propagator
(for
2D)
 – Inversion
of
a
penta‐diagonal
matrix
for
each
value
 of
 l 
 – Time
step
limited
by
strength
of
kick
 
 Computa8onal
Physics,
Koonin
eq.
(7.30)
 


  16. Numerical
approaches 
 3.
Represent
radial
wave
funcCon
via
collocaCon 
using
(symmetry
suited)
Laguerre
funcCons
 – Boyd,
Rangan
and
Bucksbaum,
Journal
of 
ComputaConal
Physics,
 188 ,
56
(2003)
 • Propagate
using
Chebychev
propagator
 – H.
Tal‐Ezer
and
R.
Kosloff,

J.
Chem.
Phys.
 81 ,
3967 
(1984)
 • Fast,
but
not
so
good
for
studying
Coulomb 
problem


  17. Calculate
spectrum
of
final
state 
 • Energy
spectrum
by
window
method:
 Schafer
and
Kulander,
Phys.
Rev.
A
 42 ,
5794

(1990)
 • Final
state
has
both
bound
(discrete)
and
 unbound
(conCnuum)
components


  18. Coherent
interacBons
of
HCPs
 with
RWPs
 0.0014a.u. Information storage & retrieval 0.0023a.u. Synthesizing eigenstates 0.0046a.u. Quantum search algorithm Q 0.01a.u. Detecting angular momentum 0.02a.u. HCP assisted recombination Higher Stabilization, imaging, chaos, … Need all Q Impulsive momentum retrieval Ionizing away from the atomic core Atomic units: e = m e = ħ = 1

  19. Control
mechanism
‐
quantum
 Impulsive interaction Propagator U = e iQz iQz | e | Ψ 〉 = Ψ 〉 final initial • To first order, HCP couples l → l±1 • As Q increases:  <l> increases  max( Σ n |<nl| Ψ >| 2 ) goes towards higher ‘l’

  20. Control
mechanism
‐
classical
 Impulsive interaction HCP boosts the momentum of the electron p f = p i + Q E f = p f 2 /2 E f = E i + p i  Q + Q 2 /2 HCP also provides a torque to the bound electron increasing its angular momentum

  21. Case
I.

Performing
a
quantum
algorithm
 in
a
Rydberg
atom
using
an
HCP
 Single
kick
 • Collaborators:
Phil
Bucksbaum
and
group:
 Jae
Ahn,
Joel
Murray,
Haidan
Wan,
Santosh
 Pisharody,
James
White


  22. Grover, Phys. Rev. Lett. 79 , 325 (1998) Average Average (before IAA) (after IAA) Conversion of phase information to amplitude information 1 2 N 2 N 2 N 2 N 1 1 4 N / / /  / / − + −             2 N 1 2 N 2 N 2 N 1 3 4 N / / /  / / − + − −       2 N 2 N 1 2 N 2 N 1 1 4 N       / / /  / / = − + −                          2 N 2 N 2 N 1 2 N 1 1 4 N / / /  / / − + −       ψ T ψ i

  23. Control
trick
–
know
the
atom
 Q 0 Impulsive
interacBon
 n o ± 1,p → n o p | Ψ final 〉 = e iQz | Ψ n o ± 2,p → n o p initial 〉 Matrix
element
 mp (Q) ml ' iQz f np f ( Q ) m , l ' | e | n , l = 〈 〉 nl 0 n o p → n o p Q (a.u) Arrange
wave
packet
superposiCon
to
obtain
desired
outcome


  24. HCP
can
perform
a
quantum
search 
 1.0
 Before
HCP
 t=2.1ps

 (000010)
 1.0
 2.0
 t
=4.2ps
 (000100)
 Both
impulse
model
and
 t
=4.7ps
 realisCc
model
of
the
HCP
give
 (001000)
 excellent
agreement
with
the
 experiment.
 Phys.
Rev.
LeW.
86,
1179
(2001)
 Phys. Rev. A, 66, 22312 (2002)

  25. Shi & Rabitz (1988, 1990), Kosloff et al (1989), … Find the control field E(t), 0 ≤ t ≤ T Initial state: | Ψ ( t = 0) 〉 = |24 p 〉 + |25 p 〉− |26 p 〉 + |27 p 〉 + |28 p 〉 + |29 p 〉 maximize 2 | 26 p | ( T ) | Target functional: 〈 Ψ 〉 penalty T 2 ∫ l ( t ) | E ( t ) | dt Cost functional: parameter minimize 0 • | ( t ) H ( t , E ( t )) | ( t ) 0 c . c . Constraint: Schrödinger’s equation Ψ 〉 + ι Ψ 〉 = + Introduce Lagrange multiplier: | λ (t) 〉 Maximize unconstrained functional: T T • 2 2 J | 26 p | ( T ) | l ( t ) | E ( t ) | dt 2 Re dt ( ( t ) | ( t ) H ( t , E ( t )) | ( t ) ) = 〈 Ψ 〉 − − 〈 λ Ψ 〉 + ι Ψ 〉 ∫ ∫ 0 0

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend