chinese remainder theorem crt chinese remainder theorem
play

Chinese Remainder Theorem (CRT) Chinese Remainder Theorem (CRT) n r - PowerPoint PPT Presentation

Chinese Remainder Theorem (CRT) Chinese Remainder Theorem (CRT) n r 1 (mod m 1 ) gcd(m i , m j ) = 1 r (mod m ) r 2 (mod m 2 ) r k (mod m k ) 1 Chinese Remainder


  1. Chinese Remainder Theorem (CRT) Chinese Remainder Theorem (CRT) n  r 1 (mod m 1 ) gcd(m i , m j ) = 1   r (mod m )  r 2 (mod m 2 )  • • •  r k (mod m k )          1

  2. Chinese Remainder Theorem (CRT) Chinese Remainder Theorem (CRT) n  r 1 (mod m 1 ) gcd(m i , m j ) = 1  solution:  r (mod m )  r 2 (mod m 2 ) m = m 1 m 2 ꞏ ꞏ ꞏ m k • • •  r k (mod m k ) z i = m / m i -1  1 (mod m i ) (since gcd(z i , m i ) = 1) *  z i -1  Z mi s.t. z i ꞏ z i k k n   z i ꞏ z i -1 ꞏ r i (mod m) i=1        1

  3. Chinese Remainder Theorem (CRT) Chinese Remainder Theorem (CRT) n  r 1 (mod m 1 ) gcd(m i , m j ) = 1  solution:  r (mod m )  r 2 (mod m 2 ) m = m 1 m 2 ꞏ ꞏ ꞏ m k • • •  r k (mod m k ) z i = m / m i -1  1 (mod m i ) (since gcd(z i , m i ) = 1) *  z i -1  Z mi s.t. z i ꞏ z i k k n   z i ꞏ z i -1 ꞏ r i (mod m) i=1  ex: r 1 =1, r 2 =2, r 3 =3 1 2 3  m 1 =3, m 2 =5, m 3 =7 m = 3 ꞏ 5 ꞏ 7     1

  4. Chinese Remainder Theorem (CRT) Chinese Remainder Theorem (CRT) n  r 1 (mod m 1 ) gcd(m i , m j ) = 1  solution:  r (mod m )  r 2 (mod m 2 ) m = m 1 m 2 ꞏ ꞏ ꞏ m k • • •  r k (mod m k ) z i = m / m i -1  1 (mod m i ) (since gcd(z i , m i ) = 1) *  z i -1  Z mi s.t. z i ꞏ z i k k n   z i ꞏ z i -1 ꞏ r i (mod m) i=1  ex: r 1 =1, r 2 =2, r 3 =3 1 2 3  m 1 =3, m 2 =5, m 3 =7 m = 3 ꞏ 5 ꞏ 7 z 1 =35, z 2 =21, z 3 =15    1

  5. Chinese Remainder Theorem (CRT) Chinese Remainder Theorem (CRT) n  r 1 (mod m 1 ) gcd(m i , m j ) = 1  solution:  r (mod m )  r 2 (mod m 2 ) m = m 1 m 2 ꞏ ꞏ ꞏ m k • • •  r k (mod m k ) z i = m / m i -1  1 (mod m i ) (since gcd(z i , m i ) = 1) *  z i -1  Z mi s.t. z i ꞏ z i k k n   z i ꞏ z i -1 ꞏ r i (mod m) i=1  ex: r 1 =1, r 2 =2, r 3 =3 1 2 3  m 1 =3, m 2 =5, m 3 =7 m = 3 ꞏ 5 ꞏ 7 z 1 =35, z 2 =21, z 3 =15 35 ꞏ 2 + 3 (-23) = 1 35 2 + 3 ( 23) 1 z -1 =2 z -1 =1 z -1 =1 z 1 2, z 2 1, z 3 1  1

  6. Chinese Remainder Theorem (CRT) Chinese Remainder Theorem (CRT) n  r 1 (mod m 1 ) gcd(m i , m j ) = 1  solution:  r (mod m )  r 2 (mod m 2 ) m = m 1 m 2 ꞏ ꞏ ꞏ m k • • •  r k (mod m k ) z i = m / m i -1  1 (mod m i ) (since gcd(z i , m i ) = 1) *  z i -1  Z mi s.t. z i ꞏ z i k k n   z i ꞏ z i -1 ꞏ r i (mod m) i=1  ex: r 1 =1, r 2 =2, r 3 =3 1 2 3  m 1 =3, m 2 =5, m 3 =7 m = 3 ꞏ 5 ꞏ 7 z 1 =35, z 2 =21, z 3 =15 z -1 =2 z -1 =1 z -1 =1 z 1 2, z 2 1, z 3 1 n  35ꞏ2ꞏ1 + 21ꞏ1ꞏ2 + 15ꞏ1ꞏ3  157  52 (mod 105) 1

  7. CRT, gcd(m 1 , m 2 )=1 , g ( 1 , 2 )  n  r 1 (mod m 1 )  n r 1 (mod m 1 ) gcd(m 1 , m 2 ) 1 gcd(m 1 , m 2 ) = 1  r 2 (mod m 2 ) 2

  8. CRT, gcd(m 1 , m 2 )=1 , g ( 1 , 2 )  n  r 1 (mod m 1 )  n r 1 (mod m 1 ) gcd(m 1 , m 2 ) 1 gcd(m 1 , m 2 ) = 1  r 2 (mod m 2 )   s, t such that m 1 s + m 2 t = 1 2

  9. CRT, gcd(m 1 , m 2 )=1 , g ( 1 , 2 )  n  r 1 (mod m 1 )  n r 1 (mod m 1 ) gcd(m 1 , m 2 ) 1 gcd(m 1 , m 2 ) = 1  r 2 (mod m 2 )   s, t such that m 1 s + m 2 t = 1 -1 + m 2 m 2 -1 = 1 i.e. m 1 m 1 1 1 2 2 2

  10. CRT, gcd(m 1 , m 2 )=1 , g ( 1 , 2 )  n  r 1 (mod m 1 )  n r 1 (mod m 1 ) gcd(m 1 , m 2 ) 1 gcd(m 1 , m 2 ) = 1  r 2 (mod m 2 )   s, t such that m 1 s + m 2 t = 1 -1 + m 2 m 2 -1 = 1 i.e. m 1 m 1 1 1 2 2 (mod m 2 ) 2

  11. CRT, gcd(m 1 , m 2 )=1 , g ( 1 , 2 )  n  r 1 (mod m 1 )  n r 1 (mod m 1 ) gcd(m 1 , m 2 ) 1 gcd(m 1 , m 2 ) = 1  r 2 (mod m 2 )   s, t such that m 1 s + m 2 t = 1 -1 + m 2 m 2 -1 = 1 i.e. m 1 m 1 1 1 2 2 (mod m 2 ) (mod m 1 ) 2

  12. CRT, gcd(m 1 , m 2 )=1 , g ( 1 , 2 )  n  r 1 (mod m 1 )  n r 1 (mod m 1 ) gcd(m 1 , m 2 ) 1 gcd(m 1 , m 2 ) = 1  r 2 (mod m 2 )   s, t such that m 1 s + m 2 t = 1 -1 + m 2 m 2 -1 = 1 i.e. m 1 m 1 1 1 2 2  n  r 1 (m 2 m 2 -1 ) + r 2 (m 1 m 1 -1 ) (mod m 1 m 2 ) 2

  13. CRT, gcd(m 1 , m 2 )=1 , g ( 1 , 2 )  n  r 1 (mod m 1 )  n r 1 (mod m 1 ) gcd(m 1 , m 2 ) 1 gcd(m 1 , m 2 ) = 1  r 2 (mod m 2 )   s, t such that m 1 s + m 2 t = 1 -1 + m 2 m 2 -1 = 1 i.e. m 1 m 1 1 1 2 2  n  r 1 (m 2 m 2 -1 ) + r 2 (m 1 m 1 -1 ) (mod m 1 m 2 ) 2

  14. CRT, gcd(m 1 , m 2 )=1 , g ( 1 , 2 )  n  r 1 (mod m 1 )  n r 1 (mod m 1 ) gcd(m 1 , m 2 ) 1 gcd(m 1 , m 2 ) = 1  r 2 (mod m 2 )   s, t such that m 1 s + m 2 t = 1 -1 + m 2 m 2 -1 = 1 i.e. m 1 m 1 1 1 2 2  n  r 1 (m 2 m 2 -1 ) + r 2 (m 1 m 1 -1 ) (mod m 1 m 2 ) Verification 2

  15. CRT, gcd(m 1 , m 2 )=1 , g ( 1 , 2 )  n  r 1 (mod m 1 )  n r 1 (mod m 1 ) gcd(m 1 , m 2 ) 1 gcd(m 1 , m 2 ) = 1  r 2 (mod m 2 )   s, t such that m 1 s + m 2 t = 1 -1 + m 2 m 2 -1 = 1 i.e. m 1 m 1 1 1 2 2  n  r 1 (m 2 m 2 -1 ) + r 2 (m 1 m 1 -1 ) (mod m 1 m 2 ) n mod m 1 = 1 Verification 2

  16. CRT, gcd(m 1 , m 2 )=1 , g ( 1 , 2 )  n  r 1 (mod m 1 )  n r 1 (mod m 1 ) gcd(m 1 , m 2 ) 1 gcd(m 1 , m 2 ) = 1  r 2 (mod m 2 )   s, t such that m 1 s + m 2 t = 1 -1 + m 2 m 2 -1 = 1 i.e. m 1 m 1 1 1 2 2  n  r 1 (m 2 m 2 -1 ) + r 2 (m 1 m 1 -1 ) (mod m 1 m 2 ) n mod m 1 = 1 Verification n mod m 2 = 2

  17. CRT, gcd(m 1 , m 2 )=1 , g ( 1 , 2 )  n  r 1 (mod m 1 )  n r 1 (mod m 1 ) gcd(m 1 , m 2 ) 1 gcd(m 1 , m 2 ) = 1  r 2 (mod m 2 )   s, t such that m 1 s + m 2 t = 1 -1 + m 2 m 2 -1 = 1 i.e. m 1 m 1 1 1 2 2 mod m 1  n  r 1 (m 2 m 2 -1 ) + r 2 (m 1 m 1 -1 ) (mod m 1 m 2 ) n mod m 1 = r 1 1 1 Verification 2

  18. CRT, gcd(m 1 , m 2 )=1 , g ( 1 , 2 )  n  r 1 (mod m 1 )  n r 1 (mod m 1 ) gcd(m 1 , m 2 ) 1 gcd(m 1 , m 2 ) = 1  r 2 (mod m 2 )   s, t such that m 1 s + m 2 t = 1 -1 + m 2 m 2 -1 = 1 i.e. m 1 m 1 1 1 2 2  n  r 1 (m 2 m 2 -1 ) + r 2 (m 1 m 1 -1 ) (mod m 1 m 2 ) n mod m 1 = r 1 0 1 1 Verification + 2

  19. CRT, gcd(m 1 , m 2 )=1 , g ( 1 , 2 )  n  r 1 (mod m 1 )  n r 1 (mod m 1 ) gcd(m 1 , m 2 ) 1 gcd(m 1 , m 2 ) = 1  r 2 (mod m 2 )   s, t such that m 1 s + m 2 t = 1 -1 + m 2 m 2 -1 = 1 i.e. m 1 m 1 1 1 2 2 mod m 2  n  r 1 (m 2 m 2 -1 ) + r 2 (m 1 m 1 -1 ) (mod m 1 m 2 ) n mod m 1 = r 1 0 1 1 Verification + n mod m 2 = r 2 2

  20. CRT, gcd(m 1 , m 2 )=1 , g ( 1 , 2 )  n  r 1 (mod m 1 )  n r 1 (mod m 1 ) gcd(m 1 , m 2 ) 1 gcd(m 1 , m 2 ) = 1  r 2 (mod m 2 )   s, t such that m 1 s + m 2 t = 1 -1 + m 2 m 2 -1 = 1 i.e. m 1 m 1 1 1 2 2  n  r 1 (m 2 m 2 -1 ) + r 2 (m 1 m 1 -1 ) (mod m 1 m 2 ) n mod m 1 = r 1 0 1 1 Verification + n mod m 2 = 0 r 2 2

  21. Manually Incremental Calculation Manually Incremental Calculation n  1 (mod 3)  2 (mod 5)  3 (mod 7)  3 (mod 7) 21

  22. Manually Incremental Calculation Manually Incremental Calculation n  1 (mod 3)  2 (mod 5)  3 (mod 7)  3 (mod 7) satisfying the 1 st eq ^  n 1  1 (mod 3)  n 1  1 (mod 3) … satisfying the 1 eq. r 1 22

  23. Manually Incremental Calculation Manually Incremental Calculation n  1 (mod 3) n  1 (mod 3)  2 (mod 5)  2 (mod 5)  3 (mod 7)  3 (mod 7) satisfying the 1 st eq ^  n 1  1 (mod 3)  n 1  1 (mod 3) … satisfying the 1 eq. 23

  24. Manually Incremental Calculation Manually Incremental Calculation n  1 (mod 3) n  1 (mod 3)  2 (mod 5)  2 (mod 5)  3 (mod 7)  3 (mod 7) satisfying the 1 st eq ^  n 1  1 (mod 3)  n 1  1 (mod 3) … satisfying the 1 eq.  3 ꞏ (-3) + 5 ꞏ 2 = 1 24

  25. Manually Incremental Calculation Manually Incremental Calculation n  1 (mod 3) n  1 (mod 3)  2 (mod 5)  2 (mod 5)  3 (mod 7)  3 (mod 7) satisfying the 1 st eq ^  n 1  1 (mod 3)  n 1  1 (mod 3) … satisfying the 1 eq. inverse of 3 (mod 5)  3 ꞏ (-3) + 5 ꞏ 2 = 1 25

  26. Manually Incremental Calculation Manually Incremental Calculation n  1 (mod 3) n  1 (mod 3)  2 (mod 5)  2 (mod 5)  3 (mod 7)  3 (mod 7) satisfying the 1 st eq ^  n 1  1 (mod 3)  n 1  1 (mod 3) … satisfying the 1 eq. inverse of 3 (mod 5)  3 ꞏ (-3) + 5 ꞏ 2 = 1 inverse of 5 (mod 3) 26

  27. Manually Incremental Calculation Manually Incremental Calculation n  1 (mod 3) n  1 (mod 3)  2 (mod 5)  2 (mod 5)  3 (mod 7)  3 (mod 7) satisfying the 1 st eq ^  n 1  1 (mod 3)  n 1  1 (mod 3) … satisfying the 1 eq. inverse of 3 (mod 5)  3 ꞏ (-3) + 5 ꞏ 2 = 1 inverse of 5 (mod 3) ^  n 2  2 ꞏ 3 ꞏ (-3) + 1 ꞏ 5 ꞏ 2 ^ n 1 27

  28. Manually Incremental Calculation Manually Incremental Calculation n  1 (mod 3) n  1 (mod 3)  2 (mod 5)  2 (mod 5)  3 (mod 7)  3 (mod 7) satisfying the 1 st eq ^  n 1  1 (mod 3)  n 1  1 (mod 3) … satisfying the 1 eq. inverse of 3 (mod 5)  3 ꞏ (-3) + 5 ꞏ 2 = 1 inverse of 5 (mod 3) ^  n 2  2 ꞏ 3 ꞏ (-3) + 1 ꞏ 5 ꞏ 2 ^ r 2 n 1 28

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend