chemistry 1000 lecture 26 crystal field theory
play

Chemistry 1000 Lecture 26: Crystal field theory Marc R. Roussel - PowerPoint PPT Presentation

Chemistry 1000 Lecture 26: Crystal field theory Marc R. Roussel November 6, 2018 Marc R. Roussel Crystal field theory November 6, 2018 1 / 18 Crystal field theory The d orbitals z z 24 20 20 16 12 10 8 20 4 20 0 10


  1. Chemistry 1000 Lecture 26: Crystal field theory Marc R. Roussel November 6, 2018 Marc R. Roussel Crystal field theory November 6, 2018 1 / 18

  2. Crystal field theory The d orbitals z z 24 20 20 16 12 10 8 −20 4 −20 0 −10 −20 0 −10 −20 −10 0 0 −10 0 −4 10 0 y 10 20 y 10 10 20 −8 x 20 −10 x 20 −12 −16 −20 −20 −24 3d x 2 − y 2 3d z 2 z z z 20 20 20 10 10 10 −20 −20 −20 0 0 0 −10 −10 −10 −20 −20 −20 −10 0 −10 −10 0 0 0 0 0 y y 10 y 10 10 10 10 10 20 20 20 x x x −10 −10 20 −10 20 20 −20 −20 −20 3d xy 3d xz 3d yz Marc R. Roussel Crystal field theory November 6, 2018 2 / 18

  3. Crystal field theory Crystal field theory In an isolated atom or ion, the d orbitals are all degenerate, i.e. they have identical orbital energies. When we add ligands however, the spherical symmetry of the atom is broken, and the d orbitals end up having different energies. The qualitative appearance of the energy level diagram depends on the structure of the complex (octahedral vs square planar vs. . . ). The relative size of the energy level separation depends on the ligand, i.e. some ligands reproducibly create larger separations than others. Marc R. Roussel Crystal field theory November 6, 2018 3 / 18

  4. Crystal field theory Octahedral crystal fields In an octahedral complex, the d x 2 − y 2 and d z 2 orbitals point directly at some of the ligands while the d xy , d xz and d yz do not. This enhances the repulsion between electrons in a metal d x 2 − y 2 or d z 2 orbital and the donated electron pair from the ligand, raising the energy of these metal orbitals relative to the other three. Thus: d d z 2 x 2 −y 2 ∆ d xy d d xz yz d d d xy d d z 2 x 2 −y 2 xz yz isolated atom atom in octahedral field ∆ = crystal-field splitting Marc R. Roussel Crystal field theory November 6, 2018 4 / 18

  5. Crystal field theory Crystal-field splitting Note: Sometimes we write ∆ o instead of ∆ to differentiate the crystal-field splitting in an octahedral field from the splitting in a field of some other symmetry (e.g. ∆ t for tetrahedral). Marc R. Roussel Crystal field theory November 6, 2018 5 / 18

  6. Crystal field theory Electron configurations At first, just follow Hund’s rule, e.g. for a d 3 configuration, d d z 2 x 2 −y 2 d xy d d xz yz P = pairing energy = extra electron-electron repulsion energy required to put a second electron into a d orbital + loss of favorable spin alignment Marc R. Roussel Crystal field theory November 6, 2018 6 / 18

  7. Crystal field theory For d 4 , two possibilities: P < ∆ P > ∆ d d d d 2 x 2 −y 2 z 2 x 2 −y 2 z d xy d d d xy d d xz yz xz yz low spin high spin Experimentally, we can tell these apart using the paramagnetic effect, which should be twice as large for the high-spin d 4 than for the low-spin d 4 configuration. Marc R. Roussel Crystal field theory November 6, 2018 7 / 18

  8. Crystal field theory Spectrochemical series We can order ligands by the size of ∆ they produce. = ⇒ spectrochemical series A ligand that produces a large ∆ is a strong-field ligand. A ligand that produces a small ∆ is a weak-field ligand. (strong) CO ≈ CN − > phen > en > NH 3 > EDTA 4 − > H 2 O > ox 2 − ≈ O 2 − > OH − > F − > Cl − > Br − > I − (weak) Marc R. Roussel Crystal field theory November 6, 2018 8 / 18

  9. Crystal field theory Example: Iron(II) complexes Electronic configuration of Fe 2+ : [Ar]3d 6 [Fe(H 2 O) 6 ] 2+ is high spin: d d 2 x 2 −y 2 z d xy d d xz yz From the spectrochemical series, we know that all the ligands after H 2 O in octahedral complexes with Fe 2+ will also produce high-spin complexes, e.g. [Fe(OH) 6 ] 4 − is high spin. (strong) CO ≈ CN − > phen > en > NH 3 > EDTA 4 − > H 2 O > ox 2 − ≈ O 2 − > OH − > F − > Cl − > Br − > I − (weak) Marc R. Roussel Crystal field theory November 6, 2018 9 / 18

  10. Crystal field theory Example: Iron(II) complexes (continued) [Fe(CN) 6 ] 4 − is low spin: d d 2 x 2 −y 2 z d xy d d xz yz Somewhere between CN − and H 2 O, we switch from low to high spin. (strong) CO ≈ CN − > phen > en > NH 3 > EDTA 4 − > H 2 O > ox 2 − ≈ O 2 − > OH − > F − > Cl − > Br − > I − (weak) Marc R. Roussel Crystal field theory November 6, 2018 10 / 18

  11. Absorption spectroscopy Color Typically in the transition metals, ∆ is in the range of energies of visible photons. Absorption: d d z 2 x 2 −y 2 d d 2 x 2 −y 2 z + h ν → d xy d d xz yz d xy d d xz yz Colored compounds absorb light in the visible range. The absorbed light is subtracted from the incident light: White light Absorption spectrum Transmitted light Absorption Intensity Intensity λ λ λ Marc R. Roussel Crystal field theory November 6, 2018 11 / 18

  12. Absorption spectroscopy Example: copper sulfate CuSO 4 · 5 H 2 O CuSO 4 solution vs blank Marc R. Roussel Crystal field theory November 6, 2018 12 / 18

  13. Absorption spectroscopy Example: copper sulfate Visible spectrum CuSO 4 in water orange yellow violet blue green red Marc R. Roussel Crystal field theory November 6, 2018 13 / 18

  14. Absorption spectroscopy The color wheel Colors in opposite sectors are complementary. Example: a material that absorbs strongly in the red will appear green. Marc R. Roussel Crystal field theory November 6, 2018 14 / 18

  15. Absorption spectroscopy Simple single-beam absorption spectrometer source monochromator sample detector Marc R. Roussel Crystal field theory November 6, 2018 15 / 18

  16. Absorption spectroscopy Dual-beam absorption spectrometer beam sample mirror splitter source monochromator mirror blank comparator Marc R. Roussel Crystal field theory November 6, 2018 16 / 18

  17. Absorption spectroscopy Example: Cobalt(III) complexes The [Co(H 2 O) 6 ] 3+ ion is green. From the color wheel, this corresponds to absorption in the red. The [Co(NH 3 ) 6 ] 3+ ion is yellow-orange. It absorbs in the blue-violet. The [Co(CN) 6 ] 3 − ion is pale yellow. It absorbs mostly in the ultraviolet, with an absorption tail in the violet. Note that these results are consistent with the spectrochemical series: The d level splitting is ordered H 2 O < NH 3 < CN − . Marc R. Roussel Crystal field theory November 6, 2018 17 / 18

  18. Absorption spectroscopy Examples: Colorless ions ⇒ d 0 configuration Titanium(IV) ion = ⇒ d 10 configuration Zinc(II) ion = Marc R. Roussel Crystal field theory November 6, 2018 18 / 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend