charge transport in disordered organic semiconductors
play

Charge transport in Disordered Organic Semiconductors Eduard Meijer - PowerPoint PPT Presentation

Charge transport in Disordered Organic Semiconductors Eduard Meijer Dago de Leeuw Erik van Veenendaal Teun Klapwijk Outline Introduction: Ordered vs. Disordered semiconductors The field-effect transistor Parameter Definition:


  1. Charge transport in Disordered Organic Semiconductors Eduard Meijer Dago de Leeuw Erik van Veenendaal Teun Klapwijk

  2. Outline • Introduction: Ordered vs. Disordered semiconductors The field-effect transistor • Parameter Definition: Threshold voltage and Mobility • Modelling the temperature dependence • Temperature dependence of the field-effect mobility • Field dependence of the conductivity • Conclusions

  3. Introduction Ordered Semiconductor Conduction band Electron energy E g Hole Valence energy band Ordered system: Simplified band conduction takes place diagram of a in the extended states semiconductor (CB&VB)

  4. Introduction Disordered Semiconductor • Non equivalent sites • Variation in energy levels

  5. Introduction Disordered Semiconductor • Localized states have a Gaussian distribution • Charge carriers hop between localized states DOS DOS E F LUMO E E E F E E F DOS HOMO The tail of the Gaussian is approximated by an Exponential H. Bässler, Phys. Stat. Sol. B, 175 , 15 (1993). M.C.J.M. Vissenberg and M. Matters, Phys. Rev. B. 57 , 12964 (1998)

  6. Introduction Field-Effect Transistor V ds + + + S D organic semiconductor V g Basic questions: • What moves? • How (fast) does it move?

  7. Introduction Field-Effect Transistor Poly(2,5-thienylene vinylene) (PTV) S n C 6 H 13 Poly(3-hexyl thiophene) (P3HT) S n Pentacene

  8. Introduction Field-Effect Transistor 10 -3 V ds =-30 V 10 -4 • P-type semiconductors 10 -5 V ds =-2 V 10 -6 • Charge carrier density 10 -7 I ds [A] is varied with applied V g . 10 -8 pentacene 10 -9 • Mobility ~ 10 -3 -10 -1 cm 2 /Vs 10 -10 10 -11 -35 -30 -25 -20 -15 -10 -5 0 5 x10 -5 V g [V] 8 V g =-20 V 6 I ds [A] V g =-15 V 4 2 V g =-10 V 0 -20 -15 -10 -5 0 V ds [V]

  9. Introduction Field-Effect Transistor 2 important characterization parameters: • Charge carrier mobility (steepness of the I ds -V g -curve) • Threshold voltage (position of the curve) Standard MOSFET modeling is often used for the parameter extraction: ( ) W = µ − linear: I V C V V d , lin FE d i g th L ( ) W = µ − 2 I C V V saturation: d , sat FE i g th 2 L

  10. Parameter definition But standard MOSFET analysis is not allowed, since: • These are accumulation devices (no inversion observed) • No extended state transport • Non-constant density of states { Threshold voltage can not be defined Mobility depends on the charge density

  11. Parameter definition Instead of the threshold voltage for accumulation FETs the flatband voltage is important # 20 10 V g =-10 V V g =-19 V 19 10 Semiconductor x Drain Source Au Au -3 ] SiO 2 18 10 ρ [cm ++ Si n Gate 17 10 16 10 0 2 4 6 8 10 x [nm] Assumption that all induced carriers move with one mobility is still found to be reasonable*: ∂ I ds L µ FE = ∂ V g WC i V ds # Appl. Phys. Lett. 80 , 3838 (2002) *Tanase et al. submitted.

  12. Modelling the temperature dependence We use a hopping model in an exponential density of states* (based on polyled modelling) DOS   E N E   = t g ( E ) exp   E F k T k T   B 0 B 0 *M.C.J.M. Vissenberg and M. Matters, Phys. Rev. B. 57 , 12964 (1998)

  13. Modelling the temperature dependence 4 modelling parameters Width of exponential distribution Flat-band voltage T 0   4     T T T    π    sin 0 ( ) T   0 − 2 1   −       ε σ ε C V V  T  T WV T 2 k T T       = 0 i g FB I d s 0 B 0 s         ( ) ds − ε 3 ε α Lq 2 T T 2 k T 2 B         0 s B 0 s c     Conductivity prefactor Overlap parameter between localized sites

  14. Modelling the temperature dependence PTV S n

  15. Modelling the temperature dependence Pentacene

  16. Modelling the temperature dependence P3HT C 6 H 13 S n

  17. Modelling the temperature dependence T 0 [K] σ 0 [10 6 S/m] α -1 [Å] V FB [V] PTV 382 5.6 1.5 1 Pentacene 385 3.5 3.1 1 P3HT 425 1.6 1.6 2.5 But what do these parameters mean? → Look at the temperature dependence in a different way

  18. Temperature dependence of the field-effect mobility 2 10 µ 0 V g =-25 V 1 10 V g =-20 V 0 10 V g =-15 V -1 10 E a V g =-10 V -2 2 /Vs] 10 V g =-5 V -3 10 µ FE [cm -4 10 -5 T 0 *=E MN /k B 10 -6 10 -7 10 -8 10 0 2 4 6 8 10 12 14 -1 ] 1000/T [K Typically observed: • Thermally activated behaviour • E a depends on the amount of induced charge (V g ) Appl. Phys. Lett. 76 , 3433 (2000)

  19. Temperature dependence of the field-effect mobility Common intersection point at T 0 *:     1 1   µ = µ − − exp E     FE 00 a k T k T *     B B 0 100 ln( µ 0 ) ~ E a → prefactor µ 0 [cm 2 /Vs] 10 Meyer-Neldel Rule * . 1 S n 0.1 k B T 0 *=38 meV for pentacene 0.0 0.1 0.2 0.3 k B T 0 *=42 meV for PTV E a [eV] * W. Meyer and H. Neldel, Z. Tech. Phys. 18 , 588 (1937).

  20. Temperature dependence Discussion No improved linearity for : 1 1 1 − − − T , T , T . 2 3 4 k B T 0 * ~ 40 meV for pentacene, PTV, P3HT C 60 and sexithiophene * . → common origin? What are µ 0 and T 0 * ? ? +

  21. Temperature dependence Discussion Jump rate from site to site j , E j The energy for a hop is supplied by phonons. + i , E i Jump rate:    δ    δ δ G S H       υ = υ − = υ − exp exp exp       0 0 k T k k T       B B B δ = δ − δ with G H T S Entropy change results in Meyer-Neldel rule A. Yelon and B. Movaghar, Phys. Rev. Lett. 65 , 618 (1990). D. Emin Phys. Rev. B 61 , 14543 (2000).

  22. Temperature dependence Discussion ln( µ 0 ) ~ E a → attempt frequency ↑ Single phonon → entropy ↑ Multi phonon Etc. A. Yelon and B. Movaghar, Phys. Rev. Lett. 65 , 618 (1990).

  23. Temperature dependence Discussion + + Single or multi-phonon? E a E a + h ω 0 > E a h ω 0 < E a A. Miller and E. Abrahams, Phys. Rev. 120 , 745 (1960). D. Emin Phys. Rev. Lett. 32 , 303 (1974).

  24. Field dependence of the in-plane conductivity E Au Glass

  25. Field dependence in PTV -7 10 209 K 187 K -8 10 170 K 156 K -9 145 K S 10 135 K n σ [S/cm] 125 K -10 10 115 K -11 10 -12 10 -13 10 0 1 2 3 4 5 6 7 1/2 [(V/ µ m) 1/2 ] E Synth. Metals. 121 , 1351 (2001).

  26. Field dependence in PTV -3 10 -4 10 49MV/m -5 34MV/m 10 25MV/m -6 10 15MV/m -7 10 σ [S/cm] -8 10 -9 10 -10 10 T 0 * -11 10 -12 10 -13 10 0 2 4 6 8 10 -1 ] 1000/T [K     − ∆ 1 1   µ = µ + − exp B F     0 k T k T k T *     B B B 0

  27. Field dependence of the mobility     − ∆ 1 1   µ = µ + − exp B F     0 k T k T k T *     B B B 0 For PTV: T 0 * � 520 K For P3HT: T 0 * � 550 K Related? #     1 1   µ = µ − − exp E ( V )     FE 00 a g k T k T *     B B 0 For PTV: T 0 * � 490 K For P3HT: T 0 * � 510 K # A. Peled, L. Schein, Phys. Scripta 44 , 304 (1991).

  28. Conclusions • Hopping in an exponential DOS gives a reasonable description of the charge transport • Meyer-Neldel rule is related to the Field dependence • T 0 * found in MNR and the field-dependent mobility indicates a multiphonon process (entropy) • Entropy considerations are important to describe the charge transport (polaron)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend