chapter 7 the laplace transform part 2
play

Chapter 7: The Laplace Transform Part 2 Department of Electrical - PowerPoint PPT Presentation

Translations and Scaling Summary Chapter 7: The Laplace Transform Part 2 Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 3, 2013 1 / 34 DE Lecture 11 Translations and


  1. Translations and Scaling Summary Chapter 7: The Laplace Transform – Part 2 Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 3, 2013 1 / 34 DE Lecture 11 王奕翔 王奕翔

  2. Translations and Scaling Summary So far we have learned 1 Basic properties of Laplace Transform 2 Inverse transform (Memorize with Laplace transform in pairs!) 3 How to use Laplace Transform to solve an IVP End of story? 2 / 34 DE Lecture 11 王奕翔

  3. Translations and Scaling Step 1 : Laplace-transform both sides: 3 / 34 Summary = = DE Lecture 11 Solving a Second-Order IVP with Laplace Transform Example Solve y ′′ − 2 y ′ + y = e 2 t , y (0) = 1 , y ′ (0) = 5 . e 2 t } { y ′′ } { y ′ } { − 2 L + L { y } = L L 1 s 2 Y ( s ) − sy (0) − y ′ (0) ( ) ⇒ − 2 ( sY ( s ) − y (0)) + Y ( s ) = s − 2 1 ⇒ ( s 2 − 2 s + 1) Y ( s ) = s + 3 + s − 2 s + 3 1 Step 2 : Solve Y ( s ) : Y ( s ) = ( s − 1) 2 + ( s − 1) 2 ( s − 2) . Step 3 : Compute the inverse Laplace transform of Y ( s ) : How to compute? { } 3 1 1 ⇒ y ( t ) = 3 L − 1 + e 2 t . Y ( s ) = ( s − 1) 2 + s − 2 = ( s − 1) 2 王奕翔

  4. Translations and Scaling A 4 / 34 Summary C B DE Lecture 11 Partial fraction decomposition : ( s − 1) 2 = ( s − 1) + 4 s + 3 1 4 = s − 1 + ( s − 1) 2 . ( s − 1) 2 1 ( s − 1) 2 ( s − 2) = s − 2 + s − 1 + ( s − 1) 2 [ ] 1 A = = 1 ( s − 1) 2 ✘✘✘ ( s − 2) s =2 [ ] 1 C = = − 1 ( s − 1) 2 ( s − 2) ✘ ✘✘✘ s =1 1 = ( B ( s − 1) + C )( s − 2) + A ( s 2 − 2 s + 1) = ⇒ B = − A = − 1 . 王奕翔

  5. Translations and Scaling Summary Need more properties of Laplace and its inverse transforms! 5 / 34 DE Lecture 11 We already know that L − 1 { 1 } = t . s 2 If we know what is the inverse transform of a function F ( s ) when it is translated by 1 in the s -axis, that is, L − 1 { F ( s − 1) } , we can solve! 王奕翔

  6. Translations and Scaling Summary 1 Translations and Scaling 2 Summary 6 / 34 DE Lecture 11 王奕翔

  7. Translations and Scaling e at 7 / 34 Proof : Summary Theorem DE Lecture 11 Translation on the s -Axis Recall that → 1 1 L L 1 − − → s , s − a . Multiplying 1 by e at in t -domain results in right-shift of a in s -domain. L Let f ( t ) − → F ( s ) . For any a , { } L e at f ( t ) = F ( s − a ) . ∫ ∞ ∫ ∞ e − ( s − a ) t f ( t ) dt = F ( s − a ) . { } L e at f ( t ) = e − st e at f ( t ) dt = 0 0 王奕翔

  8. Translations and Scaling Summary 8 / 34 DE Lecture 11 F ( s − a ) F ( s ) F ( s − a ) s s = a, a < 0 s = a, a > 0 王奕翔

  9. Translations and Scaling Summary 9 / 34 Hence, DE Lecture 11 Example Back to the Problem Solve y ′′ − 2 y ′ + y = e 2 t , y (0) = 1 , y ′ (0) = 5 . Step 3 : Compute the inverse Laplace transform of Y ( s ) : How to compute? { } 3 1 1 ⇒ y ( t ) = 3 L − 1 + e 2 t . Y ( s ) = ( s − 1) 2 + ( s − 1) 2 s − 2 = { 1 { 1 } } L − 1 = e t L − 1 = te t . ( s − 1) 2 s 2 3 1 y ( t ) = 3 te t + e 2 t . Y ( s ) = ( s − 1) 2 + ⇒ s − 2 = 王奕翔

  10. Translations and Scaling We can obtain the inverse Laplace transform of 10 / 34 Summary DE Lecture 11 Laplace Transform of t n e at n ! { t n e at } L = n = 0 , 1 , 2 , . . . , s > a ( s − a ) n +1 , 1 ( s − a ) n : t n − 1 { 1 } L − 1 = n = 1 , 2 , . . . ( n − 1)! e at , ( s − a ) n 王奕翔

  11. Translations and Scaling k 11 / 34 k We can obtain the corresponding inverse Laplace transforms: Summary DE Lecture 11 Laplace Transform of e at sin ( kt ) and e at cos ( kt ) { } L e at sin ( kt ) = ( s − a ) 2 + k 2 , s > a ( s − a ) { } L e at cos ( kt ) = ( s − a ) 2 + k 2 , s > a { } L − 1 = e at sin ( kt ) ( s − a ) 2 + k 2 { ( s − a ) } L − 1 = e at cos ( kt ) ( s − a ) 2 + k 2 王奕翔

  12. Translations and Scaling = 12 / 34 = Summary = Step 1 : Laplace-transform both sides: Example Solving a Second-Order IVP with Laplace Transform DE Lecture 11 Solve y ′′ − 4 y ′ + 5 y = t 2 e 2 t , y (0) = 2 , y ′ (0) = 6 . t 2 e 2 t } { y ′′ } { y ′ } { L − 4 L + 5 L { y } = L 2 s 2 Y ( s ) − sy (0) − y ′ (0) ( ) ⇒ − 4 ( sY ( s ) − y (0)) + 5 Y ( s ) = ( s − 2) 3 2 ⇒ ( s 2 − 4 s + 5) Y ( s ) = 2 s − 2 + ( s − 2) 3 2 s − 2 2 Step 2 : Solve Y ( s ) : Y ( s ) = s 2 − 4 s + 5 + ( s 2 − 4 s + 5)( s − 2) 3 . Step 3 : Compute the inverse Laplace transform of Y ( s ) : 4( s − 2) 2 − 2 2 Y ( s ) = ( s − 2) 2 + 1 + ( s − 2) 2 + 1 + s − 2 + ( s − 2) 3 y ( t ) = 4 e 2 t cos t + 2 e 2 t sin t − 2 e 2 t + t 2 e 2 t . ⇒ 王奕翔

  13. Translations and Scaling Summary 13 / 34 Tedious to calculate ... E D C DE Lecture 11 Partial fraction decomposition : 2 s − 2 2( s − 2) 2 s 2 − 4 s + 5 = ( s − 2) 2 + 1 + ( s − 2) 2 + 1 ( s 2 − 4 s + 5)( s − 2) 3 = A ( s − 2) + B 2 ( s − 2) 2 + 1 + s − 2 + ( s − 2) 2 + ( s − 2) 3 王奕翔

  14. Translations and Scaling E 14 / 34 E Summary C F D D C DE Lecture 11 Tip 1 : Working in C makes life easier! ( s 2 − 4 s + 5)( s − 2) 3 = A ( s − 2) + B 2 ( s − 2) 2 + 1 + s − 2 + ( s − 2) 2 + ( s − 2) 3 F ∗ = s − 2 − i + s − 2 + i + s − 2 + ( s − 2) 2 + ( s − 2) 3 [ ] 2 2 F = = 2 i · i 3 = 1 ✘ ( ✘✘✘✘ ( s − 2 − i )( s − 2 + i )( s − 2) 3 s =2+ i A = F + F ∗ = 2 Re { F } = 2 , B = i ( F − F ∗ ) = − 2 Im { F } = 0 王奕翔

  15. Translations and Scaling D 15 / 34 Summary d E DE Lecture 11 C Tip 2 : Taking derivatives 2 2( s − 2) ( s 2 − 4 s + 5)( s − 2) 3 = ( s − 2) 2 + 1 + s − 2 + ( s − 2) 2 + ( s − 2) 3 [ 2 ] E = = 2 s 2 − 4 s + 5 s =2 [ 2 ] [ − 2 ] D = = [( s − 2) 2 + 1] 2 2( s − 2) = 0 s 2 − 4 s + 5 d ( s − 2) s =2 s =2 [ 1 d 2 ] 2 C = s 2 − 4 s + 5 d ( s − 2) 2 2! s =2 ] 2 − 2( s − 2) 2 2 ( s − 2) 2 + 1 ( s − 2) 2 + 1 [[ ] [ ] = − 2 = − 2 [( s − 2) 2 + 1] 4 s =2 王奕翔

  16. Translations and Scaling Summary 16 / 34 DE Lecture 11 Translation on the t -Axis Let’s compute L { f ( t − a ) } , a > 0 , given that L { f ( t ) } = F ( s ) : ∫ ∞ ∫ ∞ τ := t − a f ( τ ) e − s ( τ + a ) d τ L { f ( t − a ) } = f ( t − a ) e − st dt = 0 − a ∫ 0 ∫ ∞ = e − as f ( τ ) e − s τ d τ + e − as f ( τ ) e − s τ d τ 0 − a ∫ 0 = e − as F ( s ) + e − as f ( τ ) e − s τ d τ − a = e − as F ( s ) , if f ( t ) = 0 when t < 0 王奕翔

  17. Translations and Scaling Summary 17 / 34 DE Lecture 11 If f ( t ) = 0 for t < 0 , then L { f ( t − a ) } = e − as L { f ( t ) } , for a > 0 . f ( t ) f ( t − a ) t = a, a > 0 t 王奕翔

  18. Translations and Scaling Summary 18 / 34 DE Lecture 11 How about functions f ( t ) that is non-zero for t < 0 ? f ( t ) f ( t − a ) t t = a, a > 0 王奕翔

  19. Translations and Scaling Summary 19 / 34 DE Lecture 11 Unit Step Function Definition (Unit Step Function) { 1 , t ≥ 0 U ( t ) := t < 0 . 0 , Note : L { f ( t ) U ( t ) } = L { f ( t ) } . U ( t ) 1 t 王奕翔

  20. Translations and Scaling Summary Theorem (Translation on the t -Axis) 20 / 34 DE Lecture 11 For a > 0 , L { f ( t − a ) U ( t − a ) } = e − as L { f ( t ) U ( t ) } = e − as L { f ( t ) } . f ( t ) U ( t ) f ( t − a ) U ( t − a ) t = a, a > 0 t 王奕翔

  21. Translations and Scaling Example 21 / 34 s Summary DE Lecture 11 s Example Examples: Laplace Transforms Calculate L {U ( t − a ) } . L {U ( t − a ) } = L { 1 · U ( t − a ) } = e − as L { 1 } = e − as . Calculate L { cos t U ( t − π ) } . L { cos t U ( t − π ) } = L { cos ( t + π − π ) U ( t − π ) } = e − π s L { cos ( t + π ) } = e − π s L {− cos t } = − e − π s s 2 + 1 . 王奕翔

  22. Translations and Scaling . 22 / 34 Summary DE Lecture 11 Examples: Inverse Laplace Transforms Example { 1 } Calculate L − 1 ( s − 4) e s Since L − 1 { } 1 = e 4 t , according to the translation property: s − 4 { 1 } { 1 } L − 1 = L − 1 = e 4( t − 1) U ( t − 1) . s − 4 e − s ( s − 4) e s 王奕翔

  23. Translations and Scaling . 23 / 34 Due to linearity and the translation property, the inverse transform is Summary s A: First we organize the term as follows: DE Lecture 11 Example Examples: Inverse Laplace Transforms { se − 2 s + e − s } Calculate L − 1 ( s − 1)( s − 2) se − 2 s + e − s 1 ( s − 1)( s − 2) e − 2 s + ( s − 1)( s − 2) = ( s − 1)( s − 2) e − s { − 1 { − 1 2 } 1 } e − 2 s + = s − 1 + s − 1 + e − s . s − 2 s − 2 { − e ( t − 2) + 2 e 2( t − 2) } { − e ( t − 1) + e 2( t − 1) } U ( t − 2) + U ( t − 1) . 王奕翔

  24. Translations and Scaling Summary 24 / 34 DE Lecture 11 Piecewise-Defined Function Unit step function is useful in representing piecewise-defined functions. Example : the following function can be rewritten in terms of U : { 1 , a ≤ t < b f ( t ) = otherwise = U ( t − a ) − U ( t − b ) . 0 , U ( t − a ) − U ( t − b ) 1 a b t 王奕翔

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend