challenges and opportunities
play

Challenges and Opportunities April 12, 2010 Boris Murmann - PowerPoint PPT Presentation

Digitizing the Analog World: Challenges and Opportunities April 12, 2010 Boris Murmann murmann@stanford.edu Murmann Murmann Mixed-Signal Group Mixed-Signal Group Murmann Mixed-Signal Group 2 Research Overview Digital enhancement MEMS


  1. Digitizing the Analog World: Challenges and Opportunities April 12, 2010 Boris Murmann murmann@stanford.edu Murmann Murmann Mixed-Signal Group Mixed-Signal Group

  2. Murmann Mixed-Signal Group 2

  3. Research Overview Digital enhancement MEMS Sensor Biomolecule algorithms interfaces detection Signal A/D Conditioning Transducers, Signal Antennas, Processing Spin-Valve Cables, ... Signal D/A Conditioning High-performance and low- power A/D and D/A Neural converters prosthetics Medical ultrasound 3

  4. Research Examples  High-performance A/D converters  Neural prosthetics  MEMS accelerometers  Large area electronics 4

  5. Digitally Assisted A/D Converters Additional digital processing for performance enhancement Signal A/D Conditioning Analog Media Signal CLK Processing and Transducers Signal D/A Conditioning Analog Digital 5

  6. ADC for a “Digital” Serial Link No analog error accumulation and better scalability  Need efficient high-speed ADC, typically > 10GS/s  6

  7. Time-Interleaving  Popular way to increase ADC throuhgput text  1 ADC 1  2 ADC 2 X(t) Y[n]  N ADC N 7

  8. Imperfections  Mismatches result in signal distortion Gain  Offset  Timing Skew   1 text V off_1 ADC 1 G 1  2 V off_2 ADC 2 G 2 X(t) Y[n]  N V off_N ADC N G N 8

  9. Our Focus: Timing Skew (2-channel example)  1  2  9

  10. Skew Calibration Using Extra ADC Statistics-based skew measurement in digital backend  Correction through analog adjustments   1 ADC 1  2 ADC 2 Y[n]  1  2 X(t)  N ADC N Digital Backend Clock  Cal Digitally adjustable ADC Cal delay cells 10

  11. Timing of Auxiliary ADC Phase  1  2  N  Cal  1  1 ADC 1  2  2 ADC 2 Y[n]  1  2  N X(t)  N  N ADC N Digital Backend Clock  Cal  Cal ADC Cal 11

  12. Calibration Scheme For each channel, adjust delay cells until correlation between  calibration ADC output and each slice are maximized ADC Cal can be 1- bit and “slow” R(  )   1  ADC 1  2 ADC 2 Y[n]  1  2 X(t)  N ADC N Max Clock  Cal ADC Cal 12

  13.  Removed pre- publication experimental data… 13

  14. MEMS Accelerometer CMOS  Capacitance change ~10 fF/g  Desired resolution ~10 mg for airbags and ESP Must resolve capacitance changes of ~100 aF   Problem: Drift in parasitic bondwire capacitance 14

  15. Sigma-Delta Interface Mechanical V F V a C x V S/H 1 Out  C  Lead Dig IN mech A  m Decimator C V x 2   Compensator ms bs k Force- Balancing M. Lemkin and B. E. Boser, “A three -axis micromachined accelerometer with a CMOS position-sense interface and digital offset- trim electronics,“ IEEE J. Solid-State Circuits , vol. 34, pp. 456-468, April 1999. 15

  16. Offset Offset due to bond wire deformation C Offset F a 1 C V S/H x mech  C  IN Lead A  m C V x 2   Compensator ms bs k Force- Balancing 16

  17. Linear Feedback System with Two Inputs x 2 y x 1 + _ a + b f 1 1     y x x 1 2 f af 17

  18. Spring Constant Modulation  The output due to C off can be modulated to higher frequencies by modulating the spring constant k  1 k k     V F C  Out mech Off C FB   FB x C Offset F a 1 C V S/H x mech  C  IN Lead A  m C V x 2   Compensator ms bs k Force- Balancing 18

  19. Spring softening effect Acceleration Acceleration Spring Spring Electrostatic _ _ + _ _ + _ _ + _ _ +  Can be used to modulate spring constant (k) 19

  20. Modulation through Multiplexed Feedback F a V C x V S/H 1  C  mech IN Out A  m Int Com Decimator C V x 2   ms bs k k m  x f k PULSE Electrostatic Force Time-Multiplexed MOD Force-Balancing MOD Force-Balancing T T 20

  21. Output Spectrum with 1-Tone Modulation 0 0 0 -20 -20 -20 -32 dB DC Offset Power/frequency (dB/Hz) Power/frequency (dB/Hz) Power/frequency (dB/Hz) -40 -40 -40 -46 dB Acceleration Capacitance -60 -60 -60 9.1 m/s^2 0 fF -80 -80 -80 9.1 m/s^2 10 fF -89 dB -100 -100 -100 9.1 m/s^2 50 fF -120 -120 -120 -140 -140 -140 -160 -160 -160 -6 -6 -6 -5 -5 -5 -4 -4 -4 -3 -3 -3 -2 -2 -2 -1 -1 -1 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 Frequency (MHz) Frequency (MHz) Frequency (MHz) 21

  22. Pseudo-Random Modulation Modulating spring-constant with a pseudo-random sequence -20 -40 Output Spectrum [dB] -60 -80 -100 -120 -140 0 2 4 6 10 10 10 10 Frequency [Hz] 22

  23. Parameter Convergence Closed-loop system - Feeding back capacitance 1.2 Feedback signal [x10 -15 ] 1 0.8 Coff=0fF Coff=0.01fF 0.6 Coff=0.1fF 0.4 Coff=1fF 0.2 0 -0.2 0 0.5 1 1.5 2 Time [Sec] 23

  24. Chip Design in Progress D Out FPGA Correlator Decimator MEMS CMOS C to V Integrator Compensator Quantizer V Out Clk State- Machine Electrostatic Feedback k-modulation V Ref Gnd Scan In/Out 24

  25. Neural Prosthetics  Cortical motor prosthetics Neurons in the motor cortical areas of the brain encode  information about intended movement Courtesy L.R. Hochberg 25 Courtesy K.V. Shenoy Nature Magazine June ‘06

  26. Neural Signal Acquisition  Electrode signals consist of multiple sources DC Offset, about 15mV from electrode/tissue interface  Local field potential (LFP), ≤3mV peak, 10Hz to 100Hz  Spikes from nearby neurons, 35 μ V – 1mV peak, 500Hz to 5kHz  Courtesy M. Sahani Courtesy C.L. Klaver 26

  27. Specs  Separate the fast and slow signal acquisition for DR Custom front end design for each path  Spikes Local Field Potential Gain 600 V/V 200 V/V Lower Cutoff 300Hz 1Hz Upper Cutoff 10kHz 1kHz Input Referred Noise 2.0µVrms 1.0µVrms in 10-100Hz (total from sampling node) Total Power (96x Array) 3mW 100µW 27

  28. Spike Path Front-End SAR ADC Input Cap Output Input Stage Buffers SC Bandpass Filter 28

  29. Sampling Phase Integrate signal current on  C B and sample High-pass for DC block  using C ac and R big (off- resistance) A 1 contains a pole that  helps minimize noise folding 29

  30. A1 Implementation Details I TAIL I<< I TAIL V outp V outm M 1a M 1b V B2 V B1 Anti-alias for thermal noise Flicker noise from M 1a,b reduction 30

  31. Static Power 31

  32. Two-Channel Interface Pixel SAR ADC Frontend 32

  33. Die Photo (96 channels, 5mm x 5mm) 33

  34. The Future? 34

  35. Organic Semiconductors  Mechanically flexible  Suitable for solution processing Cover large areas at low cost  Make disposable devices  35

  36. Orbital Energy Levels of Pentacene LUMO 22 carbon atoms Unoccupied (lowest unoccupied molecular orbital) 22 π orbitals ~3 eV ~5 eV HOMO Occupied (highest occupied molecular orbital) [Slide by Hagen Klauk]

  37. P-Channel Transistor ~3 eV LUMO ~5 eV HOMO Au Au [Slide by Hagen Klauk]

  38. Active Matrix OLED Displays http://www.youtube.com/watch?v=f8S8tbQMp2k&NR=1 38

  39. Jellyfish Autonomous Node http://muri.mse.vt.edu/ 39

  40. Jellyfish Bell Prototype (Virginia Tech) A bio-inspired shape memory alloy composite (BISMAC) actuator A .A .Villanueva, et al. , 2010 Smart Mater. Struct. 19 025013 (17pp) 40

  41. Want to Make Plastic ADCs ! 41

  42. 6-bit A/D Converter Prototype Substrate Glass Interconnect Ti/Au evaporation, litho, wet etch Gate electrodes Al evaporation, shadow masking Source/Drain Au Evaporation, shadow masking Dielectric 5.7nm AlO x /SAM PFET DNTT, ~0.5 cm 2 /Vs NFET F 16 CuPc, ~0.02 cm 2 /Vs Area 28mm x 22mm Component count 74 W. Xiong , U. Zschieschang, H. Klauk, and B. Murmann, “A 3V, 6b Successive Approximation ADC using Complementary Organic Thin-Film Transistors on Glass,” ISSCC 2010. 42

  43. Organic TFTs: Air Stability   10 stored and Hole mobility (cm 2 /Vs) tested in air S 1 S dinaphto-thieno-thiophene (DNTT) O 0.1 air O 0 30 60 90 120 150 pentacene Exposure to air (days) [Slide by Hagen Klauk] Yamamoto, J. Am. Chem. Soc. 129 2224 (2007) Klauk, Adv. Mater. 19 3882 (2007) Zschieschang, Adv. Mater. 22 982 (2010) Zschieschang, MRS Spring Meeting II-7.12 (2010)

  44. ADC Schematic Output SAR Logic Calibration enables 6-bit (off-chip) To DAC precision despite poorly matched capacitors Calibration DAC V REFP V MID V REFN C-2C structure possible due DAC with Comparator Sampler small stray caps (glass) C/32 C/32 C/32 ... Bit 0 Bit 1 Bit 2, 3, 4 Bit 5 2C 2C C C C C V REFN V REFP V REFN V REFP V REFN V REFP V REFN V MID ... Input Main DAC 44

  45. Comparator CLK CLK CLK CLK Auto-zeroing cancels threshold voltage drift CLK CLK CLK CLK C S1 C S2 C S3 C S4 C F1 C F2 C F3 C F4 - + Input Output C gdp C gdn Anti-parallel PFET/NFET layout minimizes variations if C F due to misalignment     45

  46. Measured DNL/INL Before calibration, 100 Hz clock rate 4 2 DNL (LSB) 0 -2 -4 0 8 16 24 32 40 48 56 63 Code 4 2 INL (LSB) 0 -2 -4 0 8 16 24 32 40 48 56 63 Code 46

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend