cemracs 2019 coupling model of underground flow and
play

CEMRACS 2019 Coupling model of underground flow and pollution - PowerPoint PPT Presentation

CEMRACS 2019 Coupling model of underground flow and pollution transport using a Finite volume scheme Ayoub Charhabil charhabil@math.univ-paris13.fr F. Benkhaldoun Paris 13 University August 8th, 2019 A.Charhabil Paris 13 IRSN 1 / 45


  1. CEMRACS 2019 Coupling model of underground flow and pollution transport using a Finite volume scheme Ayoub Charhabil charhabil@math.univ-paris13.fr F. Benkhaldoun Paris 13 University August 8th, 2019 A.Charhabil Paris 13 IRSN 1 / 45

  2. Introduction In Nature, It is more complex ! Figure: Porous media A.Charhabil Paris 13 IRSN 2 / 45

  3. Methematical model Mathematical Model The problem is fully descriebed by the following system of equations : Richards Equation : ∂θ ( h , x , y ) = ∇ . [ K ( h , x , y ) ∇ h ] + ∇ . K ( h , x , y ) + Q s ∂ t Transport Equation : ∂θ C + ∇ . ( qC ) = ∇ . ( θ D ∇ C ) ∂ t , A.Charhabil Paris 13 IRSN 3 / 45

  4. Methematical model 3D Richards Equation : ∂θ ( h , x , y , z ) = ∇ . [ K ( h , x , y , z ) ∇ h ] + ∇ . K ( h , x , y , z ) + Q s ∂ t With : h : head water θ : volumetric water content K : hydraulic conductivity Q s :source term A.Charhabil Paris 13 IRSN 4 / 45

  5. Methematical model 3D Transport Equation : � ∂θ C ∂ t + ∇ . ( qC ) = ∇ . ( θ D ∇ C ) θ D = λ | q | + θ D m τ with : C : solute concentration | q | :Darcy velocity λ longitudinal lenth pore/solide θ : volumetric water content A.Charhabil Paris 13 IRSN 5 / 45

  6. Methematical model 1D Richards Equation : The Richards equation takes 3 forms : The θ -Form : ∂θ ( h ) = ∂ � � ∂θ ∂ z + ∂ K �� D ( θ ) ∂ t ∂ z ∂ z The Mixed-Form : ∂θ ( h ) = ∂ � � ∂ h �� K ( θ ) ∂ z − 1 ∂ t ∂ z The h-Form : C ( h ) ∂ h ∂ t = ∂ � � ∂ h �� K ( h ) ∂ z − 1 ∂ z A.Charhabil Paris 13 IRSN 6 / 45

  7. Methematical model 1D Richards Equation : The θ -Form : ∂θ ( h ) = ∂ � � ∂θ ∂ z + ∂ K �� D ( θ ) ∂ t ∂ z ∂ z With : D = K ∂ h [ L 2 T − 1 ] ∂θ Advantages: Conservation form by construction Mass balance is improved significantly Rapid convergence Inconvinients: limited to unsaturated conditions (In saturation D is infinite !) Limited to homogenous soil ( θ can be not continuous across interfaces separating the layers !) A.Charhabil Paris 13 IRSN 7 / 45

  8. Methematical model 1D Richards Equation : The Mixed-Form : � � ∂ h �� ∂θ ( h ) = ∂ K ( θ ) ∂ z − 1 ∂ t ∂ z Advantages: Mass Conservation / Mass balance Applicable to both saturated and unsaturated soil Applicable to heterogenous soil Inconvinients: Acceptable numerical solutions not always guarenteed A.Charhabil Paris 13 IRSN 8 / 45

  9. Methematical model 1D Richards Equation : The h-Form : C ( h ) ∂ h ∂ t = ∂ � � ∂ h �� K ( h ) ∂ z − 1 ∂ z With : C ( h ) = ∂θ (C:capillary capacity) ∂ h Advantages: Applicable to both saturated and unsaturated soil Applicable heterogenous soil Very close to the physical model Less complicated to implement Inconvinients: Poor preservation of mass balance Relatively slow convergence A.Charhabil Paris 13 IRSN 9 / 45

  10. Coupling system 1D-Coupling : We choose the h-Form ! Coupling of h-Form of Richards and Transport equations in 1D : � ∂ h  C ( h ) ∂ h ∂ � �� ∂ t = K ( h ) ∂ z − 1  ∂ z      � ∂ h  q = − ∂ � �� K ( h ) ∂ z − 1 ∂ z      − ∂ qC ∂θ C ∂ � θ D ∂ C �  ∂ t =  ∂ z ∂ z ∂ z K ? C ? θ ? A.Charhabil Paris 13 IRSN 10 / 45

  11. The parameters of the physical model: The Brooks-Corey model: The Hydraulic conductivity is : � K ( h ) = K s [ θ h − θ r θ s − θ r ] 3+2 / n If h < h d K ( h ) = K s If h � h d With : K s Hydraulic conductivity in saturation h d is the bubbling or air entry pressure head (L) and is equal to the pressure head to desaturate the largest pores in the medium n = 1 − 1 / m ,m parameters linked to the soil structure A.Charhabil Paris 13 IRSN 11 / 45

  12. The parameters of the physical model: The Brooks-Corey model: The Capillary capacity is taken as followed : � C ( h ) = n θ s − θ r | h d | ( h d h ) n +1 If h < h d C ( h ) = 0 If h � h d NB : The Capillary capacity is always positive ! θ s water content in saturation θ r residual water content n et m parameters linked to the soil structure A.Charhabil Paris 13 IRSN 12 / 45

  13. The parameters of the physical model: The Brooks-Corey model: the volumetric water content is taken as followed : � θ = θ r + ( θ s − θ r ) h d If h < h d h θ = θ s If h � h d With : θ s water content in saturation θ r residual water content n et m parameters linked to the soil structure A.Charhabil Paris 13 IRSN 13 / 45

  14. The parameters of the physical model: The van Genuchten Model: Capillary capacity is taken as followed : � n ∗ m ∗ a | h | d θ C ( h ) = If h < 0 (1+( a ∗| h | ) n ) 1+ m C ( h ) = 0 If h � 0 NB : The Capillary capacity is always positive ! With: d θ = θ s − θ r S ∗ The specific volumetric storativity a ,n et m parameters linked to the soil structure A.Charhabil Paris 13 IRSN 14 / 45

  15. The parameters of the physical model: The van Genuchten Model: We introduice the saturation S e as followed : 1 S e = (1 + a n | h | n ) m The Hydraulic conductivity is :  √ S e (1 − � 1 e ) m  K ( h ) = K s 1 − S If h < 0 m K ( h ) = K s h � 0 If  With: K s Hydraulic conductivity in saturation a ,n et m parameters linked to the soil structure NB : Hydraulic conductivity is always positive ! A.Charhabil Paris 13 IRSN 15 / 45

  16. The parameters of the physical model: The van Genuchten Model: There is a ”relationship” between θ and S e , and it’s formulated this way : In saturation case : S e = θ − θ r θ s − θ r In non saturation case : S e = 1 A.Charhabil Paris 13 IRSN 16 / 45

  17. Coupling system Finite Volumes Scheme : General form we use the following FV-schemes : Explicite : h n +1 = h n j − r [ φ ( h n j , h n j +1 ) − φ ( h n j , h n j − 1 )] j Implicite : h n +1 j − r [ φ ( h n +1 , h n +1 j +1 ) − φ ( h n +1 , h n +1 = h n j − 1 )] j j j with φ the numerical flux (In our case, we consider 2 numerical flux adequate to our study :flux of ROE or Lax-Frederick ) A.Charhabil Paris 13 IRSN 17 / 45

  18. Coupling system Richards Equation :Numerical scheme The Explicite Finite volume scheme : r h n +1 = h n j )( φ n j +1 / 2 − φ n j + j − 1 / 2 ) j C ( h n with : r = ∆ t ∆ z φ : numerical flux for h K ( h n h n j +1 − h n j +1 / 2 ) j φ n j +1 / 2 = − j +1 / 2 ) ( − 1) θ ( h n ∆ z For the explicit version of our model The stability condition is : ∆ t ≤ CFLInfC ∗ ∆ z 2 2 Maxk A.Charhabil Paris 13 IRSN 18 / 45

  19. Coupling system Richards Equation :Numerical scheme The implicite Finite volume scheme : r h n +1 = h n )( φ n +1 j +1 / 2 − φ n +1 j + j − 1 / 2 ) j C ( h n +1 j with : r = ∆ t ∆ z φ : numerical flux for h K ( h n +1 h n +1 j +1 − h n +1 j +1 / 2 ) φ n +1 j j +1 / 2 = − j +1 / 2 ) ( − 1) θ ( h n +1 ∆ z A.Charhabil Paris 13 IRSN 19 / 45

  20. Coupling system Transport Equation :Numerical scheme We use an upwind scheme (1st order) : 2 C n +1 = C n +1 − r ∗ V ∗ ( fluxS n j − fluxS n ∗ ( DiffS n j − DiffS n j − 1 ) + r ∗ j − 1 ) j j θ n j + θ n j +1 With : qS n j + qS n V = j +1 2 q n qS n j j = θ n j � fluxS n j = C n If q � 0 j fluxS n j = C n q < 0 If j +1 dz ∗| q n j | DiffS n ∗ ( C n j +1 − C n j = j ) / dz Pe A.Charhabil Paris 13 IRSN 20 / 45

  21. Coupling system Numerical resultats Soil parameters for our test case : Figure: The soil A.Charhabil Paris 13 IRSN 21 / 45

  22. Coupling system Numerical resultats Soil parameters for our test case : case Sand Infiltration through homogenous Domaine lenth L=100 cm K s = 0 . 00922 cm / s , θ s = 0 . 368, θ r = 0 . 102, a = 0 . 0335 cm − 1 Parameters case 1 ∆ z = 0 . 2 cm , Pe = 0 . 2 case 2 ∆ z = 2 cm , Pe = 20 case 3 ∆ z = 2 cm , Pe = 200 case 2 Infiltration Through hetergenous soil Domaine lenth L=100 cm K s = 0 . 000151 cm / s , θ s = 0 . 4686, θ r = 0 . 106, a = 0 . 03104 cm − 1 Parameters (Clay) A.Charhabil Paris 13 IRSN 22 / 45

  23. Coupling system Numerical resultats Head water in 5 and 10 days : temps en jours: 5 temps en jours: 10 0 0 -1 -1 -2 -2 -3 -3 Pression effective h Pression effective h -4 -4 -5 -5 -6 -6 -7 -7 -8 -8 -9 -9 -10 -10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 profondeur z profondeur z A.Charhabil Paris 13 IRSN 23 / 45

  24. Coupling system Numerical resultats : Solute concentration Solute concentration in 5 and 10 days : temps en jours: 5 temps en jours: 10 1 1 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 Solute s Solute s 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 profondeur z profondeur z A.Charhabil Paris 13 IRSN 24 / 45

  25. Coupling system Numerical resultats :Hydraulic conductivity Hydraulic conductivity in 5 and 10 days: # 10 -7 temps en jours: 5 # 10 -6 temps en jours: 10 7 1 0.9 6 0.8 5 0.7 0.6 4 K(h) K(h) 0.5 3 0.4 0.3 2 0.2 1 0.1 0 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 profondeur z profondeur z A.Charhabil Paris 13 IRSN 25 / 45

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend