thermo hydro mechanical coupling for underground waste
play

Thermo hydro mechanical coupling for underground waste storage - PowerPoint PPT Presentation

Thermo hydro mechanical coupling for underground waste storage simulations Clment Chavant - Sylvie Granet Romo Frenandes EDF R&D 1 december 20 , 2006 Journe Momas Outline Underground waste storage concepts Main


  1. Thermo hydro mechanical coupling for underground waste storage simulations Clément Chavant - Sylvie Granet – Roméo Frenandes EDF R&D 1 december 20 , 2006 Journée Momas

  2. Outline  Underground waste storage concepts  Main phenomena and modelisation  Coupling  Numerical difficulties  Spatial discretisation for flows and stresses  Simulation of the excavation of a gallery 2 december 20 , 2006 Journée Momas

  3. Underground waste storage concepts (1/3) Alvéole CU Alvéole C 3 december 20 , 2006 Journée Momas

  4. Underground waste storage concepts (2/3)  C waste Cell  Alvéole de déchet B  B waste cell 4 december 20 , 2006 Journée Momas

  5. Underground waste storage concepts (3/3)  Complex geometry  Heterogeneous materials  Rock at initial state or damaged rock  Concrete  Engineered barriers (sealing, cells closure)  Fill materials  Gaps  Steel : container liners  Different physical behaviour  Mechanical, thermal , chemical, hydraulic 5 december 20 , 2006 Journée Momas

  6. Main phenomena and modelisation (1/2)  Flows  2 components (air or H 2 and water ) in 2 phases (liquid and gaz)  Transport equations : • Pressures Velocities p gz = p as  p vp M gz M as M vp  C vp = p gz  p vp =  1 − C vp   C vp ρ gz ρ as ρ vp p lq = p w  p ad • Darcy + diffusion + phase change for each phase within each phase ( dissolution /vaporization ) dp vp dp w rel  S lq  m  dT M vp M as m − h w = K int . k lq M lq  −∇ p lq  ρ lq g   h vp = − =− F vp ∇ C vp ρ lq μ lq ρ vp ρ w T ρ vp ρ as = K int . k gz rel  S lq  M gz  −∇ p gz  ρ gz g  ρ gz μ gz ρ ad p ad M ad − M w =− F ad ∇ ρ ad ¿ ol = { ¿ ¿¿ K H M ad ¿ • Sorption curve P c = f  S lq = P gz − P lq 6 december 20 , 2006 Journée Momas

  7. Main phenomena and modelisation (2/2)  Mechanical behaviour  Plastic and brittle behaviour or the rock  Dilatance effect at rupture stage Deviatoric stress 60 50 40 30 20 10 Lateral strain Axial strain 0 -0,02 -0,015 -0,01 -0,005 0 0,005 0,01 0,015 0,02 0,025 0,03  Swelling of Engineered materials . 7 december 20 , 2006 Journée Momas

  8. Numerical difficulties (1/3)  For flows  Non linear terms induce hyperbolic behaviour • Kind of equation : ∂ t − ∂ 2 u m ∂ u ∂ x 2 = 0 • Stiff fronts can appear m = 2 m  2 m  2 • Big capillary effect -> No « mean » pressure 8 december 20 , 2006 Journée Momas

  9. Numerical difficulties (2/3)  Example of a desaturation problem  Initial state : Sat=0,7 Sat=1 Porosity=0,05 Porosity=0,3 Near desaturation transition zone gas pressure tends to zero Pression de gaz (VF_RE) Saturation (VF_RE) 1,40E+05 1 1,20E+05 0,95 1s 1s 1,00E+05 0,9 10s 10s Pgz(Pa) 8,00E+04 100s 0,85 100s S 6,00E+04 1000s 1000s 0,8 4,00E+04 5000s 5000s 0,75 2,00E+04 0,7 0,00E+00 -0,2 -0,1 0 0,1 0,2 -0,5 -0,3 -0,1 0,1 0,3 0,5 X X 9 december 20 , 2006 Journée Momas

  10. Numerical difficulties (3/3)  Instabilities due to brittle behaviour ~2,2 m ~1 m B Post peak damage γ e ≤ γ p ≤ γ ult Fractured rock 0  γ p ≤ γ e Pre peak damage  σ 1 − σ 3  ≤ 0,7  σ 1 − σ 3  peak 10 december 20 , 2006 Journée Momas

  11. Coupling (1/2)  Incidence of flow on mechanical behaviour  Standard notion of pore pressure  Equivalent pore pressure definition for partially saturated media • Taking into account of interfaces in thermodynamic formulation π = S α p α − 2 1 3 ∫ S l p c  S  dS  Incidence material deformation on flow  Porosity change  Straight increase of permeability with damage ? D F D M homogenization 11 december 20 , 2006 Journée Momas

  12. Coupling (2/2)  Thermal evolution -> Mechanic  Thermal expansion Lower pressure values  Thermal evolution -> flow  Changes in Viscosity, diffusivity coefficients  Flow, mechanic -> thermal evolution  No effect 12 december 20 , 2006 Journée Momas

  13. Numerical methods for flow  Choice of principal variables  Capillary pressure/gas pressure • Air mass balance ill conditioned for S=1 ∂  ρ a  1 − S   −∇  ρ a k a  S  ∇ p a  = 0 ϕ ∂ t  Saturation/water pressure • Air mass balance becomes : ∂ p e ∂ t  ϕ  g  S  − p e  ∂ S ∂ t −∇ [ p a h  S  ∇ S ] −∇ [ p a k a  S  ∇ p e ] = 0 ϕ  1 − S  g  S  ≈ p c 0. 6 P c  S  ≈ A  1 − S  At S=1 2,6 3 h  S ≈ A  1 − S  k a  S  ≈  1 − S  ∂ S We have = 0 ∂ t 13 december 20 , 2006 Journée Momas

  14. Numerical methods for flow and mechanic : spatial discretisation  Goals  A stable, monotone method for flow  Easy to implement in a finite element code  Method 1 :pressure and displacement EF P2/P1 lumped formulation • OK for consolidation modelling Standard EF Lumped EF • OK for desaturation test (Liakopoulos) Saturation Air Pressure 14 december 20 , 2006 Journée Momas

  15. Numerical methods for flow and mechanic : spatial discretisation  Limitations of previous formulation  Poor quadrature rule induces lack of accuracy in stresses evaluations  Instabilities appear when simulating gas injection problem  CFV/DM (control finite volume/dual mesh)  Goal  formulation VF compatible with architecture of EF software  Principle • To use primal mesh for EF formulation of mechanical equations • To construct a finite volume cell surrounding each node of the primal mesh • To write mass balance on that polygonal cell K 15 december 20 , 2006 Journée Momas

  16. CFM/DM (control finite volume/dual mesh) ∂ m  u   Model equation ∇ . F  u  ; F = k  u  ∇ u ∂ t  Mass balance: n  1 − m K n  1 m K T KL k  u n  1   u n  1  = 0  ∑ n  1 − u A K Δ t KL L K L K  Up winding J H n  1 ¿ u n  1 u n  1 = u n  1 si u I L L K KL L  Loop over elements of primal mesh n  1 − m K , p,e n e m K ,e e k  u n  1  u n  1  = 0 ∑  ∑ e ∑ n  1 − u A T Δ t K KL KL L K e ∈ Τ K L ∈ e ≠ K d I ,H e = =− ∫ e ∇ λ K . ∇ λ K T d K, L KL 16 december 20 , 2006 Journée Momas

  17. CFM/DM (control finite volume/dual mesh)  Theoretical predictions :  stable, convergent and monotone for Delaunay meshes  Example H L Gas injection Pg 10 years H/L=1 S 10 years H/L=4/3  For stretching H/L > 4/3 no convergence is achieved 17 december 20 , 2006 Journée Momas

  18. CFM/DM (control finite volume/dual mesh)  Remark about interfaces  Differences between material properties can induce discontinuities.  It is better to ensure constant properties over the control cell OK No OK 18 december 20 , 2006 Journée Momas

  19. Numerical modelisation of brittle rocks  Equilibrium equation Mechanical law of behaviour σ = F  , ε α  Div σ  f = 0 ∂ σ is not positive ∂ ε  Resulting weak formulation σ ε  u ¿   ∫ OMEGA f . u ¿ = 0 ∀ u ¿ ∫ OMEGA : •Lak of ellipticity •Possible bifurcations •Instabilities 19 december 20 , 2006 Journée Momas

  20. Regularisation method  Main idea :  Introduce some term bounding gradients of strain  Second gradient σ ε  u ¿   ∫ OMEGA D . ∇ ε : ∇ ε ∫ OMEGA : ¿  ∫ OMEGA f . u ¿ = 0 ∀ u ¿  Simplified second gradient : micro gradient dilation model  For a dilatant material we can regularise only the volumic strain σ ε  u ¿   ∫ OMEGA D . ∇ Tr  ε  . ∇ Tr  ε ¿   ∫ OMEGA f . u ∫ OMEGA : ¿ = 0 ∀ u ¿ ∫ OMEGA D . u ¿ Δ . u Δ 20 december 20 , 2006 Journée Momas

  21. Mixed formulation of micro gradient dilation model  Weak formulation ¿ , λ σ ε  u ¿   ∫ OMEGA D . ∇ θ . ∇ θ ¿ − ∫ OMEGA λ  ∇ . u ¿   ∫ OMEGA λ ¿ = 0 ∀  u ¿  ∫ OMEGA : ¿  ∇ . u − θ   ∫ ¿ − θ OMEGA f . u λ θ u Approximation spaces Quadrangles Q2 Q1 P0 Triangles P2 P1 P0  Possible free energy displacements modes w ∫ OMEGA σ  w  : ε  w  = 0 ∫ e ∇ . w = 0 ∀ e  Two ways λ  Enhancing degree of discretisation for  Using penalisation σ ε  u ¿   ∫ OMEGA D . ∇ θ . ∇ θ ¿ − ∫ OMEGA λ  ∇ . u ¿   ∫ OMEGA λ ¿  ∇ . u − θ   r ∫ OMEGA  ∇ . u ¿  .  ∇ . u − θ   ∫ OMEGA f . u ∫ OMEGA : ¿ − θ ¿ − θ ¿ = 0 ∀  u ¿  ¿ , λ 21 december 20 , 2006 Journée Momas

  22. Benchmark Momas : Simulation of an Excavation under Brittle Hydro-mechanical behaviour  Cylindrical cavity  Excavation simulation  Initial conditions : anisotropic state of stress (11.0MPa, -15.4MP) ; water pressure (4.7 Mpa) Y Radius of cavity : 3 meters Horizontal length for calculation domain : 60 meters Vertical length for calculation domain : 60 meters X θ Permeability : − 12 m . s − 1 10 Time of simulation for excavation : 17 days Time of simulation for consolidation : 10 years 22 december 20 , 2006 Journée Momas

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend