c
play

C C C general form for Versatile Non-linear model of - PowerPoint PPT Presentation


  1. ✌ ✔ ☎ ✂ ☞ ✠ ✂ ✄ ✂ ✡ ✂ ✄ ✖ ✎ ✒ ✂ ✕ ✄ ✎ ✂ ✔ ✎ ✒ ✒ ✓ ✂ ✂ ✒ ✑ ☛ ✂ ☛ ✟ ✆ ✆ � � ✞ ✁ ✂ ✄ ✂ ✄ ✁ � ☎ ✁ ✝ Infiltration into a semi-infinite column under constant flux θ β 1 ˜ θ β 2 ˜ θ 2 θ D 0 C 2 2 , β 1 β 2 ˜ ˜ C 1 K r K r h 1 1 C θ θ ˜ ˜ θ ˜ C C general form for Versatile Non-linear model of Broadbridge & White (1988), Watson et al.(1995) β 1 0 , β 2 β 1 1 , β 2 β 1 0 , β 2 C 1 1 : 1 . 1 : C C 0 0 0 Dimensionless depth Dimensionless depth Dimensionless depth -1 -1 -1 -2 -2 -2 -3 -3 -3 -4 -4 -4 theory, C=1.02 theory, C=1.02 LB, C=1.02 LB, C=1.02 theory, C=1.5 C=1.02 theory, C=1.5 LB, C=1.5 C=1.5 -5 LB, C=1.5 -5 -5 0 0.2 0.4 0.6 0.8 1 -0.02 -0.01 0 0.01 0.02 0 0.2 0.4 0.6 0.8 1 Effective water content Absolute error in effective water content Effective water content θ 12 , U lb 30 , L lb Initial condition is ˜ – C 1 02 – 0 z 10 U 1 L 200 ✍✏✎ – Infiltration u r q in 1 z before ponding is modeled for q in K s 1 2 – C 1 5 Bild 1

  2. ✠ ✂ ✁ ✄ ✁ ✂ ✂ ✠ ✖ ✂ ✎ ✍ ✡ ✡ ✎ � ☞ ✒ ✖ ✎ ✖ ✎ ✡ ☛ � ✡ ☎ ✝ � � ✁ ✁ ✂ ✂ � ✝ � ☎ ✡ � ✁ ✁ ✁ ✄ ✁ ✂ � ✂ ✂ Steady state infiltration with VGM (van Genuchten 1980) and modified VGM (Vogel et al. 2001) models: θ β 0 α 0 h m , β 0 α 0 h s n n m , ˜ h 1 1 – Original model: h h s is α 0 θ ˜ 0 , n 1 and m n as empirical parameters 1 1 unbounded, h s 0 – Modified model: h h s θ ˜ is bounded, h s 0 Without averaging With averaging – Example: Sandy soil, 10 10 Moisture formulation, h_s=0 Moisture form.+Averaging, h_s=0 α 1 , n 3 7 m 5 Darcy, h_s=0 Darcy, h_s=0 9 Moisture formulation, h_s=-9cm Darcy 0 8 8 Vertical coordnate z, [m] Vertical coordnate z, [m] h_s=0 h_s=-3cm h_s=-9cm 7 -0.02 6 6 Pressure head h, [m] 5 -0.04 4 4 3 2 2 -0.06 red : h s 0 1 green: h s 3 cm 0 0 -0.08 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 blue : h s 9 cm Pressure head h, [m] Pressure head h, [m] – Input flux is q in 0 1 K s , K s 0 1 m h , h z L 0 3 4 m . Box has 100 cells. -0.1 0.999 0.9992 0.9994 0.9996 0.9998 1 Effective water content Bild 2

  3. ✂ ✂ ✖ � ✎ � ✌ ✁ ☞ ✄ ✖ ✎ ✍ � ✎ ✁ ✂ ✁ ✖ ✄ ✎ ✞ ✂ ✎ ✂ � ✄ � ✂ ✄ ✝ ✁ ✂ ✁ ✄ ✂ ✕ ✁ � ✖ ✖ ✖ ✁ ✎ ✝ � ✁ ✖ ✄ ✎ ✆ ✡ ✞ ✆ ✝ ✞ ✟ ✟ ✟ � ☎ ✁ ✂ � ✁ ☎ � ✁ ✟ ☎ ✄ ✂ ✆ ✍ ✁ � ✆ ✂ ✂ ☞ ✁ ✆ ✞ � ✟ Exact variably saturated non-stationary solution J.-P. Carlier (Cemagref, 2004) following “A class of exact solutions for Richards’ equation”, Barry et al.(1993) a) Definition of retention curve: -0.6 0.3 θ γ B ∂ h theory sub_it=0 ˜ h 1 h K r dh LB sub_it=5 ∞ -0.7 h sub_it=10 0.25 sub_it=50 -0.8 Relative L^2-Error γ h s B ∂ h 1 1 sub_it=1000 K r dh ∞ h - Depth Z, m -0.9 0.2 -1 -1.1 0.15 b) BCM hydraulic conductivity β , -1.2 function: K r h h h s 0.1 -1.3 β θ θ ˜ h s ˜ 1 1 0 then h B -1.4 0.05 -1.5 c) Linear solution within both -1.6 0 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0 100 200 300 400 500 600 700 800 900 1000 Z Pressure head, m Time, h zones: h h t 0 0 A t tKs 1 with A t 1 W e θ s θ r γ – Exact h t -solution is fixed at top Z 0 6 m and the bottom Z 1 6 m Lambert function W x , – Computations are started at t t 0 0 1 h , h t 0 Z 1 6 m 72 m x W x exp W x . 10 3 h – Picture: t 20 Bild 3

  4. ✂ ✂ ✝ � ✂ ✝ � ✁ ✡ ✡ ✄ ✁ ☛ ✁ ✖ ✎ ✎ ✖ � ✝ ✡ � � � and θ Steady state infiltration in Sandy soil using h h formulations: Pressure head formula- tion does not use re- tention curves and has Pressure head formulation Mixed formulation 10 10 no approximation when Pressure formulation, h_s=0 Mixed formulation, h_s=0 Darcy, h_s=0 Darcy 9 9 h h s is unbounded, θ ˜ 8 8 Vertical coordnate z, [m] Vertical coordnate z, [m] 0 . h s 7 7 Mixed formulation does 6 6 not use retention cur- 5 5 4 4 ves in unsaturated zone 3 3 but needs h 1 to ex- θ ˜ 2 2 trapolate them beyond 1 1 air entry value h s . He- 0 0 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 6 Pressure head h, [m] Pressure head h, [m] re, P h 1 10 θ ˜ 24 m . 3566 Pressure head h L is fixed to 3 4 m at the bottom z L 0 . – 0 1 K s . Box has 100 cells. – Input flux is q in Bild 4

  5. ✁ ✟ ✂ � � ✆ � � ✁ ✁ � ☎ ✁ ✁ ✡ ✂ ✆ ✄ ✁ � ✡ ☎ ✁ � ☎ ✝ ✁ � ✞ � ✁ ✁ ✁ � ✂ ✂ ✞ � ✂ ✄ ✟ � ✁ ✁ ☎ � ✞ � ✟ ✁ � � ✞ ✁ ✁ ☎ ✁ ☎ ✁ ✁ � ✂ ✁ � � ✆ ✁ � ☎ ✂ ✟ ✞ ✞ ✟ � � � ✄ ✞ ✁ ✁ ✁ ✆ � ✂ � � ✁ ✂ ✁ ✡ � � � � ✁ ✟ ✟ ✡ � � ✟ ☎ ✂ ✡ � ✂ ☎ ✂ ✁ ✁ � � ✆ ✡ � ✂ ✞ � ✟ � ☎ ✆ ✁ ✆ ✁ ✁ ✁ ☎ ✞ ✂ ✁ � ✡ � ✁ � � ✂ ✁ � ✁ ✂ ✁ ✂ ✁ ✁ ☎ ✁ ✁ ✂ � � ✆ � ✆ ✟ ✁ Dispersion relation (D.d’Humières) – Diffusion term: Solution is looked in the form, ν lb ν ν r ν k 2 r k 2 n k k 1 k k ω t , f f 0 exp i k r Ut n 1 where r Optimal diffusion solution ν k , c 2 e – 0 for any s and a is ω i ν k k 2 k k 1 ν k α k β ∑ α k β D αβ 2 k 2 λ opt λ opt Λ 2 λ opt 3 3 e D D k k x k y k z 9 cos θ sin φ sin θ sin φ cos φ . k – Advection term: i ω t and f 0 are the r z exp U lb k 2 r k 2 n k k U 1 u k u k 1 n eigenvalues and eigenvectors of the linear operator r – Optimal advection solution u 0 is BGK Model k 1 1 eq. , � ✆☎ � ✆☎ 1 f eq. eq. λ opt λ opt Λ 2 λ opt λ opt f 3 3 D e D e 9 diag exp k C j Bild 5

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend