theory of quarkonium electromagnetic transitions
play

Theory of quarkonium electromagnetic transitions Antonio Vairo - PowerPoint PPT Presentation

Theory of quarkonium electromagnetic transitions Antonio Vairo Technische Universit at M unchen Radiative transitions: basics Two dominant single-photon-transition processes: (1) magnetic dipole transitions (M1) (2) electric dipole


  1. Theory of quarkonium electromagnetic transitions Antonio Vairo Technische Universit¨ at M¨ unchen

  2. Radiative transitions: basics Two dominant single-photon-transition processes: (1) magnetic dipole transitions (M1) (2) electric dipole transitions (E1) γ k γ = M H 2 − M H ′ 2 ( k γ , k ) 2 M H P H = ( M H , 0 ) H �� � γ + M 2 k 2 P H ′ = H ′ , − k H

  3. Radiative transitions: basics Two dominant single-photon-transition processes: (1) magnetic dipole transitions (M1) (2) electric dipole transitions (E1) (1) M1 transitions in the non-relativistic limit: � k γ r � ∞ k 3 2 � �� n 3 S 1 → n ′ 1 S 0 γ = 4 dr r 2 R n ′ 0 ( r ) R n 0 ( r ) j 0 γ Γ M1 3 α e 2 � � Q � � m 2 2 � 0 � j 0 ( k γ r/ 2) = 1 − ( k γ r ) 2 / 24 + . . . If k γ � r � ≪ 1 • n = n ′ allowed transitions • n � = n ′ hindered transitions

  4. Radiative transitions: basics Two dominant single-photon-transition processes: (1) magnetic dipole transitions (M1) (2) electric dipole transitions (E1) (2) E1 transitions in the non-relativistic limit: 2   J ′ J 1 J ′ γ = 4   γ [ I 3 ( nL → n ′ L ′ )] 2 (2 J ′ +1) max { L,L ′ } Γ E1 3 αe 2 Q k 3 n 2 S +1 L J → n ′ 2 S +1 L ′ L ′ S L   where � ∞ dr r N R n ′ L ′ ( r ) R nL ( r ) I N ( nL → n ′ L ′ ) = 0 Note that, for equal energies and masses, M1 transitions are suppressed by a factor 1 / ( m � r � ) 2 ∼ v 2 with respect to E1 transitions, which are much more common.

  5. Γ χ c (1 P ) → J/ψ γ / Γ χ b (3 P ) → Υ(3 S ) γ c k ( c ) 3 ≈ e 2 � r 2 � ( c ) Γ χ c (1 P ) → J/ψ γ γ � r 2 � ( b ) ≈ 33 +16 − 9 b k ( b ) 3 Γ χ b (3 P ) → Υ(3 S ) γ e 2 γ assuming � r 2 � ( b ) ≈ (1 . 5 ± 0 . 5) × � r 2 � ( c ) , k ( c ) ≈ 402 MeV and k ( b ) ≈ 174 MeV. γ γ ∗ from M χ c (1 P ) ≈ h c (1 P ) ≈ 3525 MeV, M J/ψ ≈ 3097 MeV, M χ b (3 P ) ≈ 10530 MeV and M Υ(3 S ) ≈ 10355 MeV.

  6. Relativistic corrections • Relativistic corrections may be sizeable: about 30% for charmonium ( v 2 c ≈ 0 . 3 ) and 10% for bottomonium ( v 2 b ≈ 0 . 1 ). • For quarkonium radiative transitions, essentially one model/calculation has been used for over twenty years to account for relativistic corrections, based upon: relativistic equation with scalar and vector potentials; non-relativistic reduction; a somewhat imposed relativistic invariance to calculate recoil corrections. ◦ Grotch Owen Sebastian PR D30 (1984) 1924

  7. Relativistic corrections and EFTs Nowadays, however, effective field theories (EFT) for quarkonium allow • to derive expressions for radiative transitions directly from QCD; • with a well specified range of applicability; • to determine a reliable error associated with the theoretical determinations; • to improve the theoretical determinations in a systematic way. ◦ Brambilla Pineda Soto Vairo RMP 77 (2005) 1423

  8. Scales • p ∼ 1 E ∼ mv 2 ; in a non-relativistic system mv ≫ mv 2 r ∼ mv , • Λ QCD • k γ mv ≫ Λ QCD for weakly-coupled quarkonia ( J/ψ , η c , Υ(1 S ) , η b , ...); mv ∼ Λ QCD for strongly-coupled quarkonia (excited states); k γ ∼ mv 2 for hindered M1 transitions, most E1 transitions; ⇒ k γ r ≪ 1 k γ ∼ mv 4 for allowed M1 transitions.

  9. Degrees of freedom • Degrees of freedom at scales lower than mv : Q states, with energy ∼ Λ QCD , mv 2 and momentum < Q - ¯ ∼ mv ⇒ (i) singlet S (ii) octet O [if mv ≫ Λ QCD ] Gluons with energy and momentum ∼ Λ QCD , mv 2 [if mv ≫ Λ QCD ] Photons of energy and momentum lower than mv . • Power counting: p ∼ 1 r ∼ mv ; all gauge fields are multipole expanded: A ( R, r, t ) = A ( R, t ) + r · ∇ A ( R, t ) + . . . and scale like (Λ QCD or mv 2 ) dimension .

  10. Lagrangian − 1 µν F µν a − 1 4 F a 4 F em µν F µν em L pNRQCD = i∂ 0 − p 2 � � � LO in r � d 3 r Tr S † + m − V s S iD 0 − p 2 � � � + O † m − V o O � � O † r · g E S + S † r · g E O +Tr NLO in r + 1 � � O † r · g E O + O † O r · g E 2 Tr [if mv ≫ Λ QCD ] + · · · + L γ

  11. L γ L M1 + L E1 L γ = + . . . γ γ � 1 � S † , σ · ee Q B em � L M1 2 m V M1 = Tr S γ 1 + 1 � O † , σ · ee Q B em � 2 m V M1 O [if mv ≫ Λ QCD ] 1 V M1 1 � r × ee Q B em ��� 2 S † , σ · � ˆ � ˆ + r × S 4 m 2 r V M1 1 � S † , σ · ee Q B em � 3 + S 4 m 2 r � 1 � S † , σ · ee Q B em � 4 m 3 V M1 ∇ 2 + r S + · · · 4 ◦ Brambilla Jia Vairo PR D73 (2006) 054005

  12. L γ � L E1 V E1 S † r · ee Q E em S = Tr γ 1 + V E1 O † r · ee Q E em O [if mv ≫ Λ QCD ] 1 + 1 24 V E1 S † r · [( r · ∇ ) 2 ee Q E em ]S 2 + i 4 m V E1 S † { ∇ · , r × ee Q B em } S 3 i 12 m V E1 S † { ∇ r · , r × [( r · ∇ ) ee Q B em ] } S + 4 + 1 4 m V E1 [S † , σ ] · [( r · ∇ ) ee Q B em ]S 5 � i [S † , σ ] · ( ee Q E em × ∇ r )S + · · · 4 m 2 V E1 − 6 ◦ Brambilla Jia Vairo PR D73 (2006) 054005

  13. Matching The matching consists in the calculation of the coefficients V . They get contributions from • hard modes ( ∼ m ): iD 0 + D 2 2 m + c em � � 2 m σ · ee Q B em + · · · ¯ / − m ) ψ → ψ † F ψ ( iD ψ From HQET: ≡ 1 + κ em = 1 + 2 α s c em 3 π + . . . F is the quark magnetic moment. ◦ Grozin Marquard Piclum Steinhauser NP B789 (2008) 277 (3 loops) • soft modes ( ∼ mv ).

  14. M1 operator at O (1) S † , σ · e B em � � V M1 S 1 2 m � � � � V M1 = hard × soft 1 � � = 1 + 2 α s ( m ) = c em • hard + · · · F 3 π • Since σ · e B em ( R ) behaves like the identity operator to all orders V M1 does not get soft contributions. 1

  15. t f t 1 � t f + + dt t t i t 2 t i σ · ee Q B em c em F 2 m � t f = dt t i Diagrammatic factorization of the magnetic dipole coupling in the SU(3) f limit. • The argument is similar to the factorization of the QCD corrections in b → u e − ¯ ν e , which leads to √ u L γ µ b L to all orders in α s . L eff = − 4 G F / 2 V ub ¯ e L γ µ ν L ¯

  16. M1 operator at O (1) S † , σ · e B em � � V M1 S 1 2 m = 1 + 2 α s ( m ) V M1 • + · · · 1 3 π • No large quarkonium anomalous magnetic moment! ◦ Dudek Edwards Richards PR D73 (2006) 074507 (lattice)

  17. M1 operators at O ( v 2 ) V M1 V M1 1 1 � r × ee Q B em ��� � S † , σ · ee Q B em � 2 S † , σ · 3 � ˆ � ˆ r × S and S 4 m 2 4 m 2 r r c F σ · B /m � � � � � � � � + + ... = hard × soft � � � � � � c s σ · ( A em × E ) /m 2 A · A em /m � � � � = r 2 V ′ • to all orders hard = 2 c F − c s = 1 ; soft s / 2 ◦ Brambilla Gromes Vairo PL B576 (2003) 314 (Poincar´ e invariance) Luke Manohar PL B286 (1992) 348 (reparameterization invariance) V M1 = r 2 V ′ s / 2 and V M1 • = 0 2 3 • No scalar interaction!

  18. M1 operators at O ( v 2 ) S † , σ · e B em � � ∇ 2 V M1 r S 4 4 m 3 � � � � V M1 = hard × soft 4 � � • hard = 1 ◦ Manohar PR D56 (1997) 230 (reparameterization invariance) � � • soft = 1 to all orders ◦ Brambilla Pietrulewicz Vairo PRD 85 (2012) 094005 V M1 • = 1 4

  19. O ( v 2 ) corrections to weakly-coupled quarkonia O † , σ · e B em � � Coupling of photons with octets: V M1 O [if mv ≫ Λ QCD ] 1 2 m × δZ H + + + = 0 r · g E • If mv 2 ∼ Λ QCD the above graphs are potentially of order Λ 2 QCD / ( mv ) 2 ∼ v 2 . • The contribution vanishes, for σ · e B em ( R ) behaves like the identity operator. • There are no non-perturbative contributions at O ( v 2 ) ! • This is not the case for strongly-coupled quarkonia: V M1 1 � S † , σ · ee Q B em � 5 non-perturbative corrections affect the operator S . m 3 r 2

  20. J/ψ → η c γ d 3 k � (2 π ) 3 (2 π ) δ ( E J/ψ − k − E η c k ) |� γ ( k ) η c |L γ | J/ψ �| 2 Γ J/ψ → η c γ = p

  21. J/ψ → η c γ Up to order v 2 the transition J/ψ → η c γ is completely accessible by perturbation theory. k 3 α s ( M J/ψ / 2) � � Γ J/ψ → η c γ = 16 − 32 γ 3 αe 2 27 α s ( p J/ψ ) 2 1 + 4 c M 2 3 π J/ψ The normalization scale for the α s inherited from κ em is the charm mass ( α s ( M J/ψ / 2) ≈ 0 . 35 ∼ v 2 ), and for the α s , which comes from the Coulomb potential, is the typical momentum transfer p J/ψ ≈ 2 mα s ( p J/ψ ) / 3 ≈ 0 . 8 GeV ∼ mv . Γ J/ψ → η c γ = (1 . 5 ± 1 . 0) keV to be compared with the non-relativistic result ≈ 2 . 83 keV. ◦ Brambilla Jia Vairo PR D73 (2006) 054005

  22. J/ψ → η c γ (experimental status) • Only one direct experimental measurement existed for long time: Γ J/ψ → η c γ = (1 . 14 ± 0 . 23) keV ◦ Crystal Ball coll. PR D34 (1986) 711 • The situation changed in the last few years: Γ J/ψ → η c γ = (1 . 85 ± 0 . 08 ± 0 . 28) keV ◦ CLEO coll. PRL 102 (2009) 011801 Γ J/ψ → η c γ = (2 . 17 ± 0 . 14 ± 0 . 37) keV (preliminary?) ◦ KEDR coll. Chin. Phys. C34 (2010) 831

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend