cee 370 environmental engineering principles
play

CEE 370 Environmental Engineering Principles Lecture #13 - PowerPoint PPT Presentation

Print version Updated: 16 October 2019 CEE 370 Environmental Engineering Principles Lecture #13 Environmental Biology II Metabolism Reading: Mihelcic & Zimmerman, Chapter 5 Davis & Masten, Chapter 3 David Reckhow CEE 370 L#13 1


  1. Print version Updated: 16 October 2019 CEE 370 Environmental Engineering Principles Lecture #13 Environmental Biology II Metabolism Reading: Mihelcic & Zimmerman, Chapter 5 Davis & Masten, Chapter 3 David Reckhow CEE 370 L#13 1

  2. Environmental Microbiology  Types of Microorganisms  Bacteria  Viruses  Protozoa  Rotifers  Fungi  Metabolism  Microbial Disease  Microbial Growth 2 CEE 370 L#13 David Reckhow

  3. Metabolism Energy Production (Catabolism) Biosynthesis (Anabolism) Metabolites (wastes) 3 CEE 370 L#13 David Reckhow

  4. An overview of metabolism From: Sawyer, McCarty & Parkin, 1994; also: Sawyer & McCarty, 1978 4 CEE 370 L#13 David Reckhow

  5. Energy  Source  Light  Chemicals (e.g., glucose)  Storage  ATP  NAD+  Advantages of oxygen as a terminal electron acceptor  aerobic  anaerobic  facultative 5 CEE 370 L#13 David Reckhow

  6. ATP 7.3 kcal per mole 6 CEE 370 L#13 David Reckhow

  7. Nicotinamide Adenine Dinucleotide 7 CEE 370 L#13 David Reckhow

  8. Embden-Meyerhof Pathway Glucose 2 ATP Investment 2 ADP Fructose-1,6-diphosphate 2 NAD+ 4 ADP Pay-back 2 NADH 4 ATP 2 Pyruvate Net result: 2 ATPs or 14.6 kcal/mole 8 CEE 370 L#13 David Reckhow

  9. Advantages of Aerobic Systems If we have aerobic metabolism, rather than fermentation, energy from NADH may be harvested. → + 3- NADH + H + 3 PO + 3ADP + 12 O NAD+ + 3ATP + H O 4 2 2 This gives us 6 more ATPs. Then the pyruvate may be further oxidized to carbon dioxide and water, producing 30 more ATPs. The final tally is 38 ATPs or 277 kcal/mole of glucose. 9 CEE 370 L#13 David Reckhow

  10. Pathways  Generalized view of both aerobic and fermentative pathways  Also showing energy transfer  ATP  NAD From: Sawyer, McCarty & Parkin, 1994; also: Sawyer & McCarty, 1978 10 CEE 370 L#13 David Reckhow

  11. Metabolic Classification  Carbon Source  Heterotrophic: other organic matter  Autotrophic: inorganic carbon (CO 2 )  Energy Source (electron donor)  Chemosynthetic: chemical oxidation  Photosynthetic: light energy  Terminal Electron Acceptor  Aerobic: oxygen  Anaerobic: nitrate, sulfate  Fermentative: organic compounds 11 CEE 370 L#13 David Reckhow

  12. Energy Flow  Storage of Energy  Photosynthesis  Release of Energy  Respiration  Energy transfers by organisms are inherently inefficient  5-50% capture 12 CEE 370 L#13 David Reckhow

  13. Aerobic Respiration  A Redox reaction  Oxidation of Carbon + + + → + − C ( H O ) H O CO 4 H 4 e 2 2 2  Reduction of oxygen or some other terminal electron acceptor + + + − → O 4 H 4 e 2 H O 2 2 13 CEE 370 L#13 David Reckhow

  14. Other TEA: Anaerobic Respiration  Nitrate − − + → + + + C ( H 2 ) O NO N CO HCO H O 3 2 2 3 2  Manganese + + + 4 → 2 + + C ( H 2 ) O Mn Mn CO H O 2 2  Iron + + + 3 → 2 + + C ( H 2 ) O Fe Fe CO H O 2 2  Sulfate − + 2 → + + C ( H 2 ) O SO H S CO H O 4 2 2 2  Fermentation Ecological → + C ( H 2 ) O CH CO Redox 4 2 methanogenesis Sequence 14 CEE 370 L#13 David Reckhow

  15. Terminal Electron Acceptors  Contribution to Iron the oxidation of Reduction Methano- 1% organic matter genesis Sulfate 23% Reduction  Bottom waters of 27% Onondaga Lake, NY  (Effler, 1997) Nitrate Reduction 10% Aerobic 39% 15 CEE 370 L#13 David Reckhow

  16. Energetics  Principles of Gibbs Free Energy and Energy Balance can be applied to microbial growth From: Sawyer, McCarty & Parkin, 1994; also: Sawyer & McCarty, 1978 16 CEE 370 L#13 David Reckhow

  17. Energetics Cont.  Energy Balance  Cell synthesis (R c )  Energy (R a )  Electron acceptor (R d ) = + − R f R f R R s c e a d From: Sawyer, McCarty & Parkin, 1994; also: Sawyer & McCarty, 1978 17 CEE 370 L#13 David Reckhow

  18. f-values and Yield  Portions of electron donor used for:  Synthesis (f s )  Energy (f e )  Values are for rapidly growing cells From: Sawyer, McCarty & Parkin, 1994; also: Sawyer & McCarty, 1978 18 CEE 370 L#13 David Reckhow

  19. Novel Biotransformations  Oxidation  Toluene dioxygenase (TDO) From: Sawyer, McCarty & Parkin, 1994; also: Sawyer & McCarty, 1978 19 CEE 370 L#13 David Reckhow

  20. Overall Types Photoheterotrophs Purple and green non- sulfur bacteria  Carbon Source (rare)  Heterotrophic Photoautotrophs Cyanobacteria, algae & Plants  Autotrophic (primary producers)  Energy Source Chemoheterotrophs Most bacteria, fungi,  Chemosynthetic (organotrophs) protozoa & animals Chemoautotrophs  Photosynthetic Nitrifying, hydrogen , (lithotrophs) iron and sulfur bacteria 20 CEE 370 L#13 David Reckhow

  21. Enzyme Chemistry  Highly dependent on:  Temperature  pH From: Sawyer, McCarty & Parkin, 1994; also: Sawyer & McCarty, 1978 21 CEE 370 L#13 David Reckhow

  22. Enzymatic Reactions  Many ways of illustrating the steps  Substrate(s) bond to active site  Product(s) form via transition state  Product(s) are released 22 CEE 370 L#13 David Reckhow

  23. Note that some Basic Enzyme Kinetics references use k 2 for k -1 , and k 3 for k 2 k 1  Irreversible k 2 → E + S ES → E + P ← k- 1  Single intermediate  The overall rate is determined by the RLS, k 2 d [ S ] d [ P ] ≡ − = = r k 2 ES [ ] dt dt  But we don’t know [ES], so we can get it by the SS mass balance d [ ES ] = = − − 0 k [ E ][ S ] k [ ES ] k [ ES ] − 1 1 2 dt  Again, we only know [E o ] or [E tot ], not free [E], so: ( ) = − − − 0 k [ E ] [ ES ] [ S ] k [ ES ] k [ ES ] − 1 o 1 2 23 CEE 370 L#13 David Reckhow

  24. Reactants, products and Intermediates  Simple Progression of components for simple single intermediate enzyme reaction  Shaded block shows steady state intermediates  Assumes [S]>>[E] t  From Segel, 1975; Enzyme Kinetics 24 CEE 370 L#13 David Reckhow

  25. Basic Enzyme Kinetics II  And solving for [ES], + + = k [ ES ][ S ] k [ ES ] k [ ES ] k [ E ][ S ] − 1 1 2 1 o k [ E ][ S ] = [ ES ] 1 o + + k [ S ] k k − 1 1 2 [ E ][ S ] = [ ES ] o + + k k [ S ] − 1 2 k 1 25 CEE 370 L#13 David Reckhow

  26. Michaelis-Menten  Irreversible k 1 k 2 → E + S ES → E + P ← k- 1  Single intermediate d [ P ] ≡ = r k 2 ES [ ] dt [ E ][ S ] = [ ES ] o + + k k [ S ] − 1 2 k 1 d [ P ] k [ E ][ S ] r [ S ] ≡ = = r 2 o max + k k + + dt [ S ] K [ S ] − 1 2 s k 1 26 CEE 370 L#13 David Reckhow

  27. Michaelis Menten Kinetics  Classical substrate plot rmax 100 80 Reaction Rate 60 0.5r max 40 d [ P ] r [ S ] K s ≡ = max r s + dt K [ S ] 20 0 0 20 40 60 80 100 120 27 CEE 370 L#13 David Reckhow Substrate Concentration

  28. Maud Menten 28 CEE 370 L#17 David Reckhow

  29. Substrate and growth d [ P ] d [ S ] 1 dX ≡ = − = r  If we consider Y dt dt Y dt  We can define a microorganism-specific substrate utilization rate, U dX µ r dt ≡ = ≡ U YX X Y  And the maximum rates are then µ ≡ ≡ U k max max Y µ 1 d [ S ] k [ S ] 1 d [ X ] [ S ] ≡ = µ ≡ = max U and s + s + X dt K [ S ] X dt K [ S ] 29 CEE 370 L#13 David Reckhow

  30. Linearizations  Lineweaver-Burke  Double reciprocal plot Wikipedia version Voet & Voet version CEE 370 L#13 30 David Reckhow

  31.  To next lecture 31 CEE 370 L#13 David Reckhow

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend