canonical correlations for group symmetry models
play

Canonical Correlations for Group Symmetry Models Jesse Crawford - PowerPoint PPT Presentation

Canonical Correlations for Group Symmetry Models Jesse Crawford Department of Mathematics Tarleton State University jcrawford@tarleton.edu March 28, 2009 Jesse Crawford (Tarleton State University) March 28, 2009 1 / 29 Outline Canonical


  1. Canonical Correlations for Group Symmetry Models Jesse Crawford Department of Mathematics Tarleton State University jcrawford@tarleton.edu March 28, 2009 Jesse Crawford (Tarleton State University) March 28, 2009 1 / 29

  2. Outline Canonical Correlations 1 Group Symmetry Models 2 Generalized Canonical Correlations 3 Jesse Crawford (Tarleton State University) March 28, 2009 2 / 29

  3. Outline Canonical Correlations 1 Group Symmetry Models 2 Generalized Canonical Correlations 3 Jesse Crawford (Tarleton State University) March 28, 2009 3 / 29

  4. Developed by Hotelling (1936). Theory covered in Chapter 12 of Anderson (1984). Jesse Crawford (Tarleton State University) March 28, 2009 4 / 29

  5. Setting X 1 , . . . , X N are i.i.d. normally distributed random vectors with mean zero and covariance matrix Σ ∈ PD ( I ) . R I = R J 1 ⊕ R J 2 � X ( 1 ) � n X n = X ( 2 ) n Testing problem: are X ( 1 ) and X ( 2 ) independent? n n Jesse Crawford (Tarleton State University) March 28, 2009 5 / 29

  6. Notation Suppose x ∈ R J 1 and y ∈ R J 2 Linear combinations: x t X ( 1 ) and y t X ( 2 ) n n Cov Σ ( x , y ) := x t Σ 12 y V Σ ( x ) := x t Σ 11 x V Σ ( y ) := y t Σ 22 y Jesse Crawford (Tarleton State University) March 28, 2009 6 / 29

  7. Definitions The first canonical correlation is c 1 = max { Cov Σ ( x , y ) x ∈ R J 1 , y ∈ R J 2 , V Σ ( x ) = V Σ ( y ) = 1 } . Suppose the maximum is attained at ( x 1 , y 1 ) . ( x 1 , y 1 ) is the first pair of canonical covariates . Jesse Crawford (Tarleton State University) March 28, 2009 7 / 29

  8. Definitions The second canonical correlation is max { Cov Σ ( x , y ) x ∈ R J 1 , y ∈ R J 2 , V Σ ( x ) = V Σ ( y ) = 1 , c 2 = Cov Σ ( x , x 1 ) = Cov Σ ( y , y 1 ) = 0 } , Max is attained at ( x 2 , y 2 ) , the second pair of canonical covariates . . . . The k th canonical correlation is max { Cov Σ ( x , y ) x ∈ R J 1 , y ∈ R J 2 , V Σ ( x ) = V Σ ( y ) = 1 , c k = Cov Σ ( x , x i ) = Cov Σ ( y , y i ) = 0 , i = 1 , . . . , k − 1 } , Max is attained at ( x k , y k ) , the k th pair of canonical covariates . Jesse Crawford (Tarleton State University) March 28, 2009 8 / 29

  9. Results Canonical correlations: c 1 , . . . , c J 2 Canonical covariate pairs: ( x 1 , y 1 ) , . . . , ( x J 2 , y J 2 ) . Theorem c k is the kth largest root of � � − c Σ 11 Σ 12 � � � = 0 , � � Σ 21 − c Σ 22 � and the canonical covariates satisfy � − c k Σ 11 � � x k � Σ 12 = 0 . Σ 21 − c k Σ 22 y k Jesse Crawford (Tarleton State University) March 28, 2009 9 / 29

  10. Proof. c 1 is the maximum value of x t Σ 12 y subject to the constraints x t Σ 11 x = 1 y t Σ 22 y = 1 Apply Lagrange multipliers to prove results for c 1 and ( x 1 , y 1 ) . Complete proof by inducting on J 2 . Jesse Crawford (Tarleton State University) March 28, 2009 10 / 29

  11. Relation to the Maximal Invariant Statistic � A 1 � 0 A = , A 1 ∈ GL ( J 1 ) , A 2 ∈ GL ( J 2 ) 0 A 2 Group Actions: ◮ A · x = Ax , for x ∈ R I × N ◮ A · Σ = A Σ A t , for Σ ∈ PD ( I ) Testing problem is invariant under these actions The family of empirical canonical correlations is a maximal invariant statistic. Jesse Crawford (Tarleton State University) March 28, 2009 11 / 29

  12. Empirical Canonical Correlations and Eigenvalues � S 11 S 12 � ˆ Σ = S = S 21 S 22 � S 11 � 0 ˆ Σ 0 = 0 S 22 Residual � � 0 S 12 R = ˆ Σ − ˆ Σ 0 = S 21 0 Empirical canonical correlations satisfy � � − c k S 11 S 12 � � � = 0 � � S 21 − c k S 22 � | R − c k ˆ Σ 0 | = 0 Jesse Crawford (Tarleton State University) March 28, 2009 12 / 29

  13. Empirical Canonical Correlations and Eigenvalues | R − c k ˆ Σ 0 | = 0 Empirical canonical correlations are eigenvalues of R wrt. ˆ Σ 0 . Canonical covariates satisfy � x k � ( R − c k ˆ Σ 0 ) = 0 y k � x k u k = 1 � is an eigenvector of R wrt. ˆ Σ 0 corresponding to c k y k 2 v k = 1 � � x k is an eigenvector corresponding to − c k 2 − y k Jesse Crawford (Tarleton State University) March 28, 2009 13 / 29

  14. Empirical Canonical Covariates and Eigenvectors x k = u k + v k y k = u k − v k Jesse Crawford (Tarleton State University) March 28, 2009 14 / 29

  15. Outline Canonical Correlations 1 Group Symmetry Models 2 Generalized Canonical Correlations 3 Jesse Crawford (Tarleton State University) March 28, 2009 15 / 29

  16. Theory: Andersson and Madsen (1998), Appendix A Ten Fundamental Testing Problems: Andersson, Brøns, and Jensen (1983) Jesse Crawford (Tarleton State University) March 28, 2009 16 / 29

  17. Pattern Covariance Matrices Testing covariance structure of a multivariate normal distribution. Example (Testing Complex Structure) � A � − B H 0 : Σ = B A Example (Testing Independence) � Σ 11 � 0 H 0 : Σ = 0 Σ 22 Example (Bartlett’s Test) � Γ � Σ 11 � � 0 0 H 0 : Σ = vs. H : Σ = 0 Γ 0 Σ 22 Jesse Crawford (Tarleton State University) March 28, 2009 17 / 29

  18. Notation G ≤ O ( I ) is a compact group GL G ( I ) = { Invertible matrices that commute with G } PD G ( I ) = { Positive definite matrices that commute with G } Group Symmetry Model X 1 , X 2 , . . . , X N i.i.d. Normal ( 0 , Σ) H G : Σ ∈ PD G ( I ) Jesse Crawford (Tarleton State University) March 28, 2009 18 / 29

  19. Example (Testing Complex Structure) � 0 � �� − 1 J G 0 = ± 1 I , ± 1 J 0 Example (Testing Independence) � 1 J 1 � �� 0 G 0 = ± 1 I , ± 0 − 1 J 2 Example (Bartlett’s Test) �� 1 J � 0 0 � 1 J �� G 0 = , 0 − 1 J 1 J 0 Jesse Crawford (Tarleton State University) March 28, 2009 19 / 29

  20. Estimation � gSg t dg ˆ Σ = Ψ G ( S ) = G Σ = 1 ˆ � gSg t | G | g ∈ G Example (Testing Complex Structure) � S 11 + S 22 Σ 0 = 1 � S 12 − S 21 ˆ S 21 − S 12 S 11 + S 22 2 ˆ Σ ∼ generalized Wishart distribution on PD G ( I ) . Jesse Crawford (Tarleton State University) March 28, 2009 20 / 29

  21. Testing G ≤ G 0 PD G 0 ( I ) ⊆ PD G ( I ) Testing problem: H 0 : Σ ∈ PD G 0 ( I ) vs. H : Σ ∈ PD G ( I ) Actions of A ∈ GL G ( I ) ◮ A · x = Ax , for x ∈ R I × N ◮ A · Σ = A Σ A t , for Σ ∈ PD G ( I ) Maximal invariant: eigenvalues of R = ˆ Σ − ˆ Σ 0 wrt. ˆ Σ 0 . Jesse Crawford (Tarleton State University) March 28, 2009 21 / 29

  22. Questions Can canonical correlations be generalized? Are these maximally invariant eigenvalues canonical correlations? Jesse Crawford (Tarleton State University) March 28, 2009 22 / 29

  23. Outline Canonical Correlations 1 Group Symmetry Models 2 Generalized Canonical Correlations 3 Jesse Crawford (Tarleton State University) March 28, 2009 23 / 29

  24. Setting X 1 , X 2 , . . . , X N i.i.d. Normal ( 0 , Σ) Θ 0 ⊆ Θ ⊆ PD ( I ) Testing problem: H 0 : Σ ∈ Θ 0 vs. H : Σ ∈ Θ t : Θ → Θ 0 Σ 0 = t (ˆ ˆ Σ) Jesse Crawford (Tarleton State University) March 28, 2009 24 / 29

  25. Definitions c 1 = max { Cov Σ ( x , y ) Cov t (Σ) ( x , y ) = 0 , V Σ ( x ) = V Σ ( y ) = 1 } c k = max { Cov Σ ( x , y ) Cov t (Σ) ( x , y ) = 0 , V Σ ( x ) = V Σ ( y ) = 1 ◮ for i = 1 , . . . , k − 1, ◮ Cov t (Σ) ( x , x i ) = Cov t (Σ) ( x , y i ) = 0, ◮ Cov t (Σ) ( y , x i ) = Cov t (Σ) ( y , y i ) = 0 } Jesse Crawford (Tarleton State University) March 28, 2009 25 / 29

  26. Results Eigenvalues of Σ − t (Σ) wrt. t (Σ) : λ 1 ≥ · · · ≥ λ I λ k − λ k + 1 − k λ k + λ I + 1 − k + 2, for k = 1 , . . . , ⌊ I c k = 2 ⌋ Covariate pairs: characterized in terms of eigenvectors Proof. WLOG, t (Σ) = 1 I and Σ − t (Σ) = Λ = Diag ( λ 1 , . . . , λ I ) Apply Lagrange multipliers to c 1 = max { x t Λ y x , y ∈ R I , x t ( 1 I + Λ) x = y t ( 1 I + Λ) y = 1 , x t y = 0 } Induct on I Jesse Crawford (Tarleton State University) March 28, 2009 26 / 29

  27. Canonical Correlations for Group Symmetry Models Θ = PD G ( I ) Θ 0 = PD G 0 ( I ) t = Ψ G Eigenvalues of ˆ Σ − ˆ Σ 0 wrt. ˆ Σ 0 λ 1 , λ 2 , . . . , − λ 2 , − λ 1 c k = λ k , for k = 1 , . . . , ⌊ I 2 ⌋ Covariate pairs: characterized in terms of eigenvectors Jesse Crawford (Tarleton State University) March 28, 2009 27 / 29

  28. Further Research Eigenvalues related to other testing problems, such as graphical models. Unbiasedness of likelihood ratio tests for group symmetry models. Jesse Crawford (Tarleton State University) March 28, 2009 28 / 29

  29. References Andersson, S.A., Brøns, H.K., and Tolver Jensen, S. (1983). Distribution of Eigenvalues in multivariate statistical analysis. Ann. Statist. 11 392-415. Andersson, S.A. and Madsen, J. (1998). Symmetry and lattice conditional independence in a multivariate normal distribution. Ann. Statist. 26 525-572. Hotelling, Harold (1936). Relations Between Two Sets of Variates. Biometrika 28 321-377. Jesse Crawford (Tarleton State University) March 28, 2009 29 / 29

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend