candecomp parafac based array processing
play

Candecomp/Parafac based Array Processing David Brie CRAN UMR 7039 - PowerPoint PPT Presentation

Candecomp/Parafac based Array Processing David Brie CRAN UMR 7039 - Universit e de Lorraine - CNRS Winter school : Search for Latent Variables : ICA, Tensors and NMF 2 4 February 2015, Villard de Lans 1 Candecomp/Parafac Decompositions


  1. Candecomp/Parafac based Array Processing David Brie CRAN UMR 7039 - Universit´ e de Lorraine - CNRS Winter school : Search for Latent Variables : ICA, Tensors and NMF 2 – 4 February 2015, Villard de Lans 1

  2. Candecomp/Parafac Decompositions CP based Array Processing CP-Based Vector Sensor Array Processing 2

  3. Candecomp/Parafac Decompositions 3

  4. Useful matrix operations A = [ a 1 · · · a R ] , ( I × R ) B = [ b 1 · · · b R ] , ( J × R ) – Kronnecker product   A (1 , 1) B A (1 , 2) B · · · A (2 , 1) B A (2 , 2) B · · ·  , ( IJ × R 2 )   A ⊗ B =  . . . – Khatri-Rao product A ⊙ B = [ a 1 ⊗ b 1 · · · a R ⊗ b R ] , ( IJ × R ) – Outer product a ◦ b ( i, j ) = a ( i ) b ( j ) i.e. a ◦ b = ab T , rank 1 matrix. a ◦ b , ( I × J ) , a ◦ b ◦ c , ( I × J × K ) , a ◦ b ◦ c ( i, j, k ) = a ( i ) b ( j ) c ( k ) i.e. rank 1 tensor. 4

  5. CP Decomposition of an order 3 tensor CP : Candecomp/Parafac [Harshman, 1970-1972], [Carroll - Chang, 1970] R � X ≈ a r ◦ b r ◦ c r = [ [ A , B , C ] ] r =1 A ( I × R ) , B ( J × R ) , C ( K × R ) c 1 c R b 1 b R C σ 1 σ R B a 1 a R X = = · · · A + + Tensor rank : minimal number of rank 1 tensors to represent X . Alternative writing Slice : X k = AD k ( C ) B T , k = 1 , · · · , K Unfolding : X ( KJ × I ) = ( B ⊙ C ) A T 5

  6. CP based Array Processing Antenna arrays 6

  7. b Direction Of Arrival (DOA) z S k Far field EM wave ⇒ plane wave θ Direction cosine k   m sin( θ ) cos( φ ) × × × × × y k = sin( θ ) sin( φ )   φ cos( θ ) x Narrowband assumption Received signal on sensor 1 : s ( t ) e j 2 π λ t λ ( t − t m ) ≈ s ( t ) e j 2 π e j 2 π Received signal on sensor m : s ( t − t m ) e j 2 π λ t m λ t � �� � � �� � complex envelope carrier λ k T d m where d m is the position of the m th sensor Phase factor : e j 2 π λ t m = e j 2 π 7

  8. Multiple Sources P narrowband sources Steering vector of the p th source : a ( k p ) = [ e j 2 π λ k T d 1 · · · e j 2 π λ k T d M ] T X = AS T + N dim( X ) = ( M × K ) � � A = a ( k 1 ) , . . . , a ( k P ) ( M × P ) � � S = s 1 , s 2 , . . . , s P ( K × P ) DOA estimation ⇒ estimation of A ⇒ estimation of k p , p = 1 , · · · , P Unambiguous estimation ⇒ inter-element spacing ≤ λ/ 2 Eigen decomposition approaches (Music, Esprit) 8

  9. bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc Rotational Invariance Basic idea of Esprit : the array can be decomposed into 2 translated but otherwise identical subarrays ⇒ GEVD of stacked data corresponding to each subarray Two non-overlapping subarrays Two overlapping subarrays The idea of Esprit is difficult to extend to multiple invariances ! 9

  10. bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc CP-based Array Processing Seminal work of Sidiropoulos, Bro and Giannakis (2000) ⇒ Handling multiple invariances ⇒ Joint estimation of both DOA and sources An array with multiple invariances S T + N � � X = A 1 ⊙ A 2 10

  11. bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc Multi-scale Array Level 1 Level 2 Level 3 N � d n d l 1 ,l 2 ,...,l N = l n n =1 11

  12. Data Model (1) Phase factor for one narrowband source : N N j 2 π j 2 π � � � k T d n � � λ k T d n � a l 1 ,l 2 ,...,l N ( k ) = exp = exp . l n l n λ n =1 n =1 Array manifold for the entire sensor array a ( k ) = a 1 ( k ) ⊗ · · · ⊗ a N ( k ) , with   e j (2 π/λ ) k T d n 1 .   . a n ( k ) =   .   e j (2 π/λ ) k T d n Ln ⊗ Kronecker product 12

  13. Data Model (2) P narrowband sources � � A 1 = a 1 ( k 1 ) , . . . , a 1 ( k P ) ( L 1 × P ) . . . � � = a N ( k 1 ) , . . . , a N ( k P ) ( L N × P ) A N � � = s 1 , s 2 , . . . , s P ( K × P ) S � � S T + N , X = A 1 ⊙ · · · ⊙ A N ⇒ CP Model of order N + 1 Single snapshot ⇒ CP Model of order N 13

  14. Model identifiability – [Sidiropoulos and Bro 2000] : sufficient condition for the uniqueness of CP decomposition for N -way arrays – P sources with distinct DOAs and not fully correlated – Number of snapshots greater than number of sources ( K > P ) N � min( L n , P ) ≥ P + N. n =1 – Case of a single snapshot N � min( L n , P ) ≥ 2 P + N − 1 . n =1 14

  15. Parameter estimation (1) Estimation of the steering vectors by CP decomposition of the data a p n : n th level estimated steering vector for the p th source ˆ Estimating the DOA parameters for the p th source ⇒ minimization of the following criterion : N � I N ( k p ) = J n ( k p ) . n =1 a p n − a n ( k p ) � 2 , n = 1 , . . . , N, J n ( k p ) = � ˆ 15

  16. b b b Parameter estimation (2) I N ( k p ) : non-convex criterion highly non-linear ⇒ Sequential strategy similar to a GNC approach I 1 ( k p ) , ∆ ≤ λ/ 2 I 2 ( k p ) I 3 ( k p ) ⇒ The ordering of the sub-arrays is important ! 16

  17. Parameter estimation (3) First Stage : Estimate A 1 , . . . , A N by CP decomposition of the data. Second Stage : ◮ For p = 1 , . . . , P and for n = 1 , . . . , N compute k ∗ p,n = argmin I n ( k p ) . k p ◮ Output : The estimated parameters for the P sources : ˆ k p = (ˆ u p , ˆ v p , ˆ w p ) = k ∗ p,N with p = 1 , . . . , P . 17

  18. bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc Simulation results (1) Niveau 3 λ 2 Y 10 λ O X – Two scales L 1 = 5 , L 2 = 4 – Three scales L 1 = 5 , L 2 = 2 , L 3 = 2 ⇒ single snapshot case – Two sources with distinct DOAs – Comparison with ESPRIT [Wong, Zoltowski 1998] 18

  19. Simulation results (2) 10 0 10 -2 R.M.S.E for ( u, v ) estimation (in radians) CP-based method for Source #1 R.M.S.E for ( u, v ) estimation (in radians) CP-based method for Source #2 MUSIC-ESPRIT for Source #1 MUSIC-ESPRIT for Source #2 10 -1 Dual-Size ESPRIT for Source #1 Dual-Size ESPRIT for Source #2 CRB for Source #1 10 -3 CRB for Source #2 10 -2 10 -3 10 -4 CP-based method for Source #1 CP-based method for Source #2 MUSIC-ESPRIT for Source #1 10 -4 MUSIC-ESPRIT for Source #2 Dual-Size ESPRIT for Source #1 Dual-Size ESPRIT for Source #2 CRB for Source #1 CRB for Source #2 10 -5 10 -5 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 SNR dB SNR dB CRMSE , K= 5 CRMSE , K=20 10 -1 10 0 R.M.S.E for ( u, v ) estimation (in radians) CP-based method for Source #1 R.M.S.E for ( u, v ) estimation (in radians) CP-based method for Source #2 MUSIC-ESPRIT for Source #1 10 -1 MUSIC-ESPRIT for Source #2 Dual-Size ESPRIT for Source #1 Dual-Size ESPRIT for Source #2 CRB for Source #1 10 -2 10 -2 CRB for Source #2 10 -3 10 -3 10 -4 CP-based method for Source #1 CP-based method for Source #2 MUSIC-ESPRIT for Source #1 MUSIC-ESPRIT for Source #2 10 -5 Dual-Size ESPRIT for Source #1 Dual-Size ESPRIT for Source #2 CRB for Source #1 CRB for Source #2 10 -4 10 -6 10 0 10 1 10 2 0 10 20 30 40 50 60 70 SNR dB # of snapshots CRMSE , SNR = 15 dB CRMSE , K=1 19

  20. Simulation results (3) – Four scales L 1 = L 2 = L 3 = L 4 = 3 – Two sources with distinct DOAs – Comparison with ESPRIT [Wong, Zoltowski 1998] and Tensor-ESPRIT [Haardt et al. 2008] 20

  21. Simulation results (4) 10 -2 CP-based method for Source #1 R.M.S.E for ( u, v ) estimation (in radians) R.M.S.E for ( u, v ) estimation (in radians) CP-based method for Source #1 CP-based method for Source #2 CP-based method for Source #2 Standard Tensor-ESPRIT for Source #1 Standard Tensor-ESPRIT for Source #1 Standard Tensor-ESPRIT for Source #2 Standard Tensor-ESPRIT for Source #2 Unitary Tensor-ESPRIT for Source #1 10 -3 Unitary Tensor-ESPRIT for Source #1 Unitary Tensor-ESPRIT for Source #2 Unitary Tensor-ESPRIT for Source #2 Dual-Size ESPRIT for Source #1 Dual-Size ESPRIT for Source #1 Dual-Size ESPRIT for Source #2 Dual-Size ESPRIT for Source #2 CRB for Source #1 CRB for Source #1 CRB for Source #2 CRB for Source #2 10 -3 10 -4 10 -4 0 5 10 15 20 25 0 5 10 15 20 25 SNR dB SNR dB CRMSE , K= 10 CRMSE , K=50 10 -1 10 -1 CP-based method for Source #1 CP-based method for Source #1 R.M.S.E for ( u, v ) estimation (in radians) CP-based method for Source #2 CP-based method for Source #2 Standard Tensor-ESPRIT for Source #1 Standard Tensor-ESPRIT for Source #1 R.M.S.E for ( u, v ) estimation (in radians) Standard Tensor-ESPRIT for Source #2 Standard Tensor-ESPRIT for Source #2 Unitary Tensor-ESPRIT for Source #1 Unitary Tensor-ESPRIT for Source #1 Unitary Tensor-ESPRIT for Source #2 Unitary Tensor-ESPRIT for Source #2 Dual-Size ESPRIT for Source #1 Dual-Size ESPRIT for Source #1 Dual-Size ESPRIT for Source #2 10 -2 Dual-Size ESPRIT for Source #2 CRB for Source #1 10 -2 CRB for Source #1 CRB for Source #2 CRB for Source #2 10 -3 10 -3 10 -4 10 -4 10 0 10 1 10 2 0 5 10 15 Inter-grid spacing, in units of half-wavelengths # of snapshots CRMSE , SNR = 6 dB CRMSE , K=5, SNR = 6 dB 21

  22. CP-Based Vector Sensor Array Processing 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend