calder on zygmund theory
play

Calder on-Zygmund theory Updated May 23, 2020 Plan 2 Outline: - PowerPoint PPT Presentation

Calder on-Zygmund theory Updated May 23, 2020 Plan 2 Outline: Statement and motivation Proof via Marcinkiewicz and duality Applications to Hilbert and inverse-Fourier transform General Calder on-Zygmund kernels Motivations 3 Q: What


  1. Calder´ on-Zygmund theory Updated May 23, 2020

  2. Plan 2 Outline: Statement and motivation Proof via Marcinkiewicz and duality Applications to Hilbert and inverse-Fourier transform General Calder´ on-Zygmund kernels

  3. Motivations 3 Q: What happens with Riesz transform ż 1 T α f p x q : “ | x ´ y | α f p y q d y when α “ d ? Or with Hilbert transform? A: Integral not defined even for nice f due to singularity at x “ y , but could truncate to | x ´ y | ě ǫ , perhaps. Singularity as | x | Ñ 8 bad too; kernel 1 K p x q : “ | x | d 1 | x |ě ǫ obeys K P L 1,w , but Schur’s test requires L r ,w with r ą 1

  4. Calder´ on-Zygmund theorem 4 Theorem (Calder´ on-Zygmund) Consider the measure space p R d , L p R d q , λ q for d ě 1 . For all A , B ą 0 , all M ą 1 and all p P p 1, 8q there is C p P p 0, 8q such that for all measurable kernels K : R d Ñ R satisfying K P L 2 with Fourier transform p K obeying } p K } 8 ď A and ż ˇ ˇ ˇ K p x ´ z q ´ K p x q ˇ d x ď B , sup | x |ą M | z | z P R d � t 0 u the convolution operator T K f : “ K ‹ f is well defined by the integral expression for all f P L 1 and extends continuously to a map L p Ñ L p for each p P p 1, 8q with } T K } L p Ñ L p ď C p @ p P p 1, 8q :

  5. Remarks 5 1st condition ensures K is locally integrable and K ‹ f meaningful for f P L 1 (by Young convolution inequality) 2nd condition often stated as K P C 1 p R d � t 0 uq with ˇ ˇ ˜ B ˇ ∇ K p x q ˇ ď @ x P R d � t 0 u : | x | d ` 1 which (along with 1st condition) gives ˜ B { d | K p x q| ď | x | d and so we cannot hope for more than K P L 1,w (and so Schur’s test is still out). Upshot: Trading local regularity against integrability

  6. Strategy of proof 6 1st condition implies T K is strong type p 2, 2 q with 2nd condition this implies T K is weak type p 1, 1 q . This is the key novelty; requires so called Calderon-Zygmund decomposition of R d into sets where f is bounded and sets where f has bounded integral Marcinkiewicz interpolation gives T K is strong type p p , p q for all p P p 1, 2 s Duality: true also for p P r 2, 8q

  7. Improved Young convolution inequality 7 Recall: By Young convolution inequality f P L 2 and g P L 1 implies integral f ‹ g converges absolutely a.e. and } f ‹ g } 2 ď } f } 2 } g } 1 Need a slight improvement: Lemma @ f P L 1 @ g P L 2 : } f ‹ g } 2 ď } f } 2 } p g } 8 Proof: Let f P L 1 and g P L 2 . Fourier transform isometry so } y f ‹ g } 2 ď } f } 1 } g } 2 Hence g ÞÑ y f ‹ g continuous. If g P L 1 , then y f ‹ g “ p f p g so true for g P L 2 as well. Hence } f ‹ g } 2 “ } y f ‹ g } 2 “ } p g } 2 ď } p f p f } 2 } p g } 8 “ } f } 2 } p g } 8

  8. Strong type p 2, 2 q 8 Corollary The operator T K is strong type p 2, 2 q with } T K } L 2 Ñ L 2 ď A Proof: For f P L 1 , T K f well defined via K ‹ f and obeys } T K f } 2 ď A } f } 2 by above lemma. So T K extends to L 2 with } T K } L 2 Ñ L 2 ď A

  9. Calder´ on-Zygmund decomposition 9 Dyadic cube is any cube of the form 2 n x ` r 0, 2 n q d for x P Z d and n P Z . Lemma (Calder´ on-Zygmund decomposition) Let f P L 1 and t ą 0 . Then there exist disjoint dyadic cubes t Q i u i P I such that ż | f | d λ ď 2 d t λ p Q i q @ i P I : t λ p Q i q ă Q i and ď λ -a.e. on R d � | f | ď t Q i i P I

  10. Proof of Calder´ on-Zygmund decomposition 10 Call a dyadic cube Q good if ż 1 | f | d λ ď t λ p Q q Q ş | f | d λ ď t 2 n , all and call it bad otherwise. For n P Z such that dyadic cubes of side-length 2 n good. Let t Q i u i P I enumerate the set of all bad dyadic cubes Q such that the (unique) dyadic cube Q 1 containing Q and having side length twice as that of Q is good. Then ż ż Q 1 | f | d λ ď t λ p Q 1 q “ 2 d t λ p Q q t λ p Q q ă | f | d λ ď Q because Q is bad and Q 1 is good. If x lies only in good cubes, Lebesgue differentiation shows | f p x q| ď t a.e. (Need a version for dyadic cubes; proved when discussed martingale convergence.)

  11. Weak type p 1, 1 q 11 Proposition T K is weak type p 1, 1 q . Explicitly, ` ˘ ď c D c P p 0, 8q @ f P L 1 @ t ą 0: λ | T K f | ą t t } f } 1 where c depends only d and the constants A and B

  12. Decomposition of f 12 Pick f P L 1 and t ą 0 and let t Q i u i P I be as above. Set ď F : “ R d � Q i i P I define g : R d Ñ R by # ş 1 Q i f d λ if x P Q i for some i P I λ p Q i q g p x q : “ f p x q if x P F and abbreviate h p x q : “ f p x q ´ g p x q Note that ż h “ 0 on F ^ @ i P I : h d λ “ 0 Q i Union bound + additivity: ` ˘ ` ˘ ` ˘ | T K f | ą t ď λ | T K g | ą t { 2 ` λ | T K h | ą t { 2 λ Now estimate each term separately . . .

  13. Tails of T K g 13 Will use that T K maps L 2 Ñ L 2 with norm ď A (proved above). Need to estimate ż ż ÿ } g } 2 g 2 d λ ` g 2 d λ 2 “ F Q i i P I ż ż ´ ¯ 2 ÿ 1 ď t | f | d λ ` f d λ λ p Q i q λ p Q i q F Q i i P I ż ÿ p 2 d t q 2 λ p Q i q ď t | f | d λ ` F i P I ż ż ÿ | f | d λ ` 4 d t ď t | f | d λ F Q i i P I ż ż F c | f | d λ “ p 4 d ` 1 q t } f } 1 | f | d λ ` 4 d t “ t F Hence 2 ď 4 A 2 p 4 d ` 1 q ` ˘ 2 ď 4 A 2 ď 4 t 2 } T K g } 2 t 2 } g } 2 λ | T K g | ą t { 2 } f } 1 t

  14. Tails of T K h 14 ş Consider h i : “ h 1 Q i . Let y i : “ the center of Q i . As Q i h d λ “ 0, ż ż ` ˘ T K h i p x q “ K p x ´ y q h i p y q d y “ K p x ´ y q ´ K p x ´ y i q h i p y q d y Q i Q i ? Let Q 1 i : “ the cube of M d -times the side length of Q i centered at y i . By Tonelli and 2nd condition: ż | T K h i | d λ R d � Q 1 i ż ´ż ¯ˇ ˇ ˇ ˇ ˇ K p x ´ y i ` y ´ y i q ´ K p x ´ y i q ˇ d x ˇ h i p y q ˇ d y ď R d � Q 1 Q i ż i ż ď B | h | d λ ď 2 B | f | d λ Q i Q i which uses | x ´ y i | ą M | y ´ y i | for all x R Q 1 i and all y P Q i . Then . . .

  15. Tails of T K h continued ... 15 . . . abbreviating F 1 : “ R d � Ť i ě 1 Q 1 i we thus get ż ˇ ˇ T K h | d λ ď 2 B } f } 1 F 1 On the other hand, ÿ ? d q d ÿ λ p R d � F 1 q ď λ p Q 1 i q “ p M λ p Q i q i P I i P I ? ? ż ÿ d q d d q d ď p M | f | d λ ď p M } f } 1 t t Q i i P I and so ? ż d q d ` 4 B ` ˘ ˇ ď λ p R d � F 1 q ` 2 ˇ T K h | d λ ď p M | T K h | ą t { 2 } f } 1 λ t t F 1 So claim holds with ? c : “ 4 A 2 p 4 d ` 1 q ` p M d q d ` 4 B

  16. Proof of Calder´ on-Zygmund theorem 16 Marcinkiwicz: T K strong type p p , p q for p P p 1, 2 s . Now let q P p 2, 8q and let p be such that p ´ 1 ` q ´ 1 “ 1. Then duality between L p and L q gives ż ˇ ˇ ˇ ˇ @ f P L 1 X L p @ g P L q : g p K ‹ f q d λ ˇ ď } T K } L p Ñ L p } f } p } g } q ˇ For f P L 1 integral K ‹ f converges absolutely. So by Fubini-Tonelli: ż ˇ ˇ ˇ ˇ @ f P L 1 X L p @ g P L q X L 1 : ˇ p T K g q f d λ ˇ ď } T K } L p Ñ L p } f } p } g } q Density of L p X L 1 in L p gives @ g P L q X L 1 : } T K g } q ď } T K } L p Ñ L p } g } q . which implies that T K extends continuously to a map L q Ñ L q with } T } L q Ñ L q ď } T K } L p Ñ L p (Equality holds by duality.)

  17. Application to Hilbert transform 17 Recall: Hf defined as the ǫ Ó 0 limit of convolution-type operator H ǫ f : “ K ǫ ‹ f where K ǫ p x q : “ 1 π x 1 p ǫ ,1 { ǫ q p| x |q Convergence pointwise for f P C 1 p R q X L 1 and in L 2 for f P L 2 Theorem (Hilbert transform in L p ) We have } H ǫ } L p Ñ L p ă 8 . @ p P p 1, 8q : sup 0 ă ǫ ă 1 In particular, for all p P p 1, 8q , there exists a continuous linear operator H : L p Ñ L p such that @ f P L p : ǫ Ó 0 Hf in L p . H ǫ f Ý Ñ

  18. Proof of Theorem 18 For strong type p 2, 2 q , use Fourier calculation to get ż K ǫ p z q “ ´ 2i sin p 2 π zt q p d t π t ǫ ă t ă 1 { ǫ Hence, A : “ sup 0 ă ǫ ă 1 } p K ǫ } 8 ă 8 . For weak type p 1, 1 q , compute ˇ ˇ ˇ K ǫ p x ´ z q ´ K ǫ p x q ˇ ˇ ˇ ˇ ˇ x ´ z ´ 1 1 ˇ ` 1 ˇ ˇ ˇ 1 p ǫ ,1 { ǫ q p| x ´ z |q ´ 1 p ǫ ,1 { ǫ q p| x |q ˇ ď ˇ x | x | ď 2 | z | | x | 2 ` 1 | x | 1 tp 1 { ǫ ´| z | ,1 { ǫ `| z |q p| x |q ` 1 | x | 1 tp ǫ ´| z | , ǫ `| z |q p| x |q Need to integrate this over | x | ą 2 | z | . First term easy. For the other two terms we note that . . .

  19. Proof of Theorem continued ... 19 . . . for any a , b ą 0 with max t 2 b , a ´ b u ă a ` b , ż a ` b ´ ¯ d x a ` b x “ log max t 2 b , a ´ b u max t 2 b , a ´ b u Examining a ´ b ă 2 b and a ´ b ą 2 b separately, RHS ď log p 2 q . Now use this with a : “ ǫ , 1 { ǫ and b “ | z | to get ż ˇ ˇ ˇ K ǫ p x ´ z q ´ K ǫ p x q ˇ d x ă 8 B : “ sup sup | x |ą 2 | z | 0 ă ǫ ă 1 z P R � t 0 u So t H ǫ u 0 ă ǫ ă 1 obey conditions of Calder´ on-Zygmund theorem with uniform A and B (and M : “ 2). So we get } H ǫ } L p Ñ L p ă 8 . sup 0 ă ǫ ă 1 It remains to address convergence H ǫ f Ñ Hf . . .

  20. Proof of Theorem continued ... 20 . . . which we already know in L 2 by Fourier techniques. We will use interpolation for L p -norms. Given p P p 1, 8q , choose ˜ p P p 1, p q when p ă 2 or ˜ p P p p , 8q when p ą 2. Then 1 p “ p 1 ´ θ q 1 p ` θ 1 2 for some θ P p 0, 1 q and so ˜ p X L 2 : @ f P L ˜ 2 } H ǫ f ´ H δ f } 1 ´ θ } H ǫ f ´ H δ f } p ď } H ǫ f ´ H δ f } θ . p ˜ Now } H ǫ f ´ H δ f } 2 Ñ 0 as ǫ , δ Ó 0 by the claim in L 2 while ´ ¯ } H ǫ f ´ H δ f } ˜ p ď 2 sup } H ǫ } L ˜ } f } ˜ p . p Ñ L ˜ p 0 ă ǫ 1 ă 1 Completeness of L p shows H ǫ f Ñ Hf for each f P L ˜ p X L 2 . As p X L 2 dense in L p , true for all f P L p . L ˜

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend