two weight inequalities for commutators with calder on
play

Two-Weight Inequalities for Commutators with Calder on-Zygmund - PowerPoint PPT Presentation

Two-Weight Inequalities for Commutators with Calder on-Zygmund Operators Irina Holmes Joint work with B. D. Wick, M. Lacey, R. Rahm, S. Spencer, S. Petermichl Michigan State University Midwestern Workshop on Asymptotic Analysis IUPUI,


  1. Introduction GOAL: two-weight version of Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables , 1976 ◮ Characterize the norm of the commutator [ b , T ] : L p ( R n ; µ ) → L p ( R n ; λ ) , where T is a CZO, in terms of the BMO norm of b .

  2. Introduction GOAL: two-weight version of Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables , 1976 ◮ Characterize the norm of the commutator [ b , T ] : L p ( R n ; µ ) → L p ( R n ; λ ) , where T is a CZO, µ , λ are A p weights, in terms of the BMO norm of b .

  3. Introduction GOAL: two-weight version of Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables , 1976 ◮ Characterize the norm of the commutator [ b , T ] : L p ( R n ; µ ) → L p ( R n ; λ ) , where T is a CZO, µ , λ are A p weights, in terms of the BMO norm of b . Recall: ◮ A p weights: � w � Q � w 1 − q � p − 1 [ w ] A p := sup Q Q

  4. Introduction GOAL: two-weight version of Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables , 1976 ◮ Characterize the norm of the commutator [ b , T ] : L p ( R n ; µ ) → L p ( R n ; λ ) , where T is a CZO, µ , λ are A p weights, in terms of the BMO norm of b . Recall: ◮ A p weights: � w � Q � w 1 − q � p − 1 [ w ] A p := sup Q Q ◮ Muckenhoupt, Hunt, Wheeden (1970’s)

  5. Introduction GOAL: two-weight version of Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables , 1976 ◮ Characterize the norm of the commutator [ b , T ] : L p ( R n ; µ ) → L p ( R n ; λ ) , where T is a CZO, µ , λ are A p weights, in terms of the BMO norm of b . Recall: ◮ A p weights: � w � Q � w 1 − q � p − 1 [ w ] A p := sup Q Q ◮ Muckenhoupt, Hunt, Wheeden (1970’s) ◮ M : L p ( w ) → L p ( w ) ⇔ w ∈ A p

  6. Introduction GOAL: two-weight version of Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables , 1976 ◮ Characterize the norm of the commutator [ b , T ] : L p ( R n ; µ ) → L p ( R n ; λ ) , where T is a CZO, µ , λ are A p weights, in terms of the BMO norm of b . Recall: ◮ A p weights: � w � Q � w 1 − q � p − 1 [ w ] A p := sup Q Q ◮ Muckenhoupt, Hunt, Wheeden (1970’s) ◮ H : L p ( w ) → L p ( w ) ⇔ w ∈ A p

  7. Introduction GOAL: two-weight version of Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables , 1976 ◮ Characterize the norm of the commutator [ b , T ] : L p ( R n ; µ ) → L p ( R n ; λ ) , where T is a CZO, µ , λ are A p weights, in terms of the BMO norm of b . Recall: ◮ A p weights: � w � Q � w 1 − q � p − 1 [ w ] A p := sup Q Q ◮ Muckenhoupt, Hunt, Wheeden (1970’s) ◮ H : L p ( w ) → L p ( w ) ⇔ w ∈ A p ◮ A 2 weights: � w � Q � w − 1 � Q [ w ] A 2 := sup Q

  8. Introduction GOAL: two-weight version of Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables , 1976 ◮ Characterize the norm of the commutator [ b , T ] : L p ( R n ; µ ) → L p ( R n ; λ ) , where T is a CZO, µ , λ are A p weights, in terms of the BMO norm of b .

  9. Introduction GOAL: two-weight version of Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables , 1976 ◮ Characterize the norm of the commutator [ b , T ] : L p ( R n ; µ ) → L p ( R n ; λ ) , where T is a CZO, µ , λ are A p weights, in terms of the BMO norm of b ??

  10. Introduction GOAL: two-weight version of Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables , 1976 ◮ Characterize the norm of the commutator [ b , T ] : L p ( R n ; µ ) → L p ( R n ; λ ) , where T is a CZO, µ , λ are A p weights, in terms of the BMO norm of b ?? Recall: ◮ OK in the one-weight case µ = λ .

  11. Introduction GOAL: two-weight version of Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables , 1976 ◮ Characterize the norm of the commutator [ b , T ] : L p ( R n ; µ ) → L p ( R n ; λ ) , where T is a CZO, µ , λ are A p weights, in terms of the BMO norm of b ?? Recall: ◮ OK in the one-weight case µ = λ . ◮ What if µ � = λ ?

  12. Introduction GOAL: two-weight version of Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables , 1976 ◮ Characterize the norm of the commutator [ b , T ] : L p ( R n ; µ ) → L p ( R n ; λ ) , where T is a CZO, µ , λ are A p weights, in terms of the BMO norm of b ?? Recall: ◮ OK in the one-weight case µ = λ . ◮ What if µ � = λ ? Bloom!

  13. Outline Introduction Bloom’s Result Main Results Upper Bound Lower Bound: Key Idea

  14. Bloom (1985) 𝑐, 𝐼 : ¡𝑀 ' → ¡ 𝑀 ' 𝑐 ¡ ∈ 𝐶𝑁𝑃 bounded 1 𝑐 -./ ≔ ¡sup 𝑅 ¡ 7 𝑐 𝑦 − ¡ 𝑐 4 𝑒𝑦 4 4

  15. Bloom (1985) 𝑐, 𝐼 : ¡𝑀 ' (𝑥) → ¡𝑀 ' (𝑥) 𝑐 ¡ ∈ 𝐶𝑁𝑃 bounded 1 𝑐 012 ≔ ¡sup 𝑅 ¡ : 𝑐 𝑦 − ¡ 𝑐 7 𝑒𝑦 7 7

  16. Bloom (1985) 𝑐, 𝐼 : 𝑀 ' (𝜈) → 𝑀 ' (𝜇) 𝑐 ∈ 𝐶𝑁𝑃 bounded 1 𝑐 123 ≔ sup 𝑅 ; 𝑐 𝑦 − 𝑐 8 𝑒𝑦 8 8

  17. Bloom (1985) 𝑐, 𝐼 : 𝑀 ' (𝜈) → 𝑀 ' (𝜇) 𝑐 ∈ 𝐶𝑁𝑃 bounded 1 𝑐 123 ≔ sup 𝑅 ; 𝑐 𝑦 − 𝑐 8 𝑒𝑦 8 8

  18. Bloom (1985) 𝑐, 𝐼 : 𝑀 ' (𝜈) → 𝑀 ' (𝜇) 𝑐 ∈ 𝐶𝑁𝑃(𝜉) bounded 1 𝑐 234 ≔ sup 𝑅 < 𝑐 𝑦 − 𝑐 9 𝑒𝑦 9 9

  19. Bloom (1985) 𝑐, 𝐼 : 𝑀 ' (𝜈) → 𝑀 ' (𝜇) 𝑐 ∈ 𝐶𝑁𝑃(𝜉) bounded @ ' A 𝜇 B@ ' A 𝜉 ≔ 𝜈 1 𝑐 234 ≔ sup 𝑅 < 𝑐 𝑦 − 𝑐 9 𝑒𝑦 9 9

  20. Bloom (1985) 𝑐, 𝐼 : 𝑀 ' (𝜈) → 𝑀 ' (𝜇) 𝑐 ∈ 𝐶𝑁𝑃(𝜉) bounded A ' B 𝜇 CA ' B 𝜉 ≔ 𝜈 1 𝑐 234(5) ≔ sup 𝑅 = 𝑐 𝑦 − 𝑐 : 𝑒𝑦 : :

  21. Bloom (1985) 𝑐, 𝐼 : 𝑀 ' (𝜈) → 𝑀 ' (𝜇) 𝑐 ∈ 𝐶𝑁𝑃(𝜉) bounded A ' B 𝜇 CA ' B 𝜉 ≔ 𝜈 1 𝑐 234(5) ≔ sup 𝜉(𝑅) = 𝑐 𝑦 − 𝑐 : 𝑒𝑦 : :

  22. Bloom (1985) 𝑐, 𝐼 : ¡𝑀 ' (𝜈) → ¡𝑀 ' (𝜇) 𝑐 ¡ ∈ 𝐶𝑁𝑃(𝜉) bounded A ' B ¡𝜇 CA ' B 𝜉 ≔ 𝜈 1 𝑐 234(5) ≔ ¡sup 𝜉(𝑅) ¡ = 𝑐 𝑦 − ¡ 𝑐 : 𝑒𝑦 : :

  23. Bloom (1985) 𝑐, 𝐼 : ¡𝑀 ' (𝜈) → ¡𝑀 ' (𝜇) 𝑐 ¡ ∈ 𝐶𝑁𝑃(𝜉) bounded

  24. Bloom (1985) 𝑐, 𝐼 : 𝑀 ' (𝜈) → 𝑀 ' (𝜇) 𝑐 ∈ 𝐶𝑁𝑃(𝜉) bounded Ø Extend to all CZO’s 𝑈 on ℝ 4

  25. Bloom (1985) 𝑐, 𝐼 : 𝑀 ' (𝜈) → 𝑀 ' (𝜇) 𝑐 ∈ 𝐶𝑁𝑃(𝜉) bounded Ø Extend to all CZO’s 𝑈 on ℝ 4 Ø Long-term: Extend to multiparameter setting

  26. Bloom (1985) 𝑐, 𝐼 : 𝑀 ' (𝜈) → 𝑀 ' (𝜇) 𝑐 ∈ 𝐶𝑁𝑃(𝜉) bounded Ø Extend to all CZO’s 𝑈 on ℝ 4 Ø Long-term: Extend to multiparameter setting Ø Dyadic approach

  27. Outline Introduction Bloom’s Result Main Results Upper Bound Lower Bound: Key Idea

  28. CRW: Upper Bound: � [ b , T ] : L p → L p � � � b � BMO Lower Bound: n � � [ b , R j ] : L p → L p � . � b � BMO � j =1

  29. Main Results (H., Lacey, Wick): Upper Bound: � [ b , T ] : L p ( µ ) → L p ( λ ) � � � b � BMO ( ν ) Lower Bound: n � � [ b , R j ] : L p → L p � . � b � BMO � j =1

  30. Main Results (H., Lacey, Wick): Upper Bound: � [ b , T ] : L p ( µ ) → L p ( λ ) � � � b � BMO ( ν ) Lower Bound: n � � [ b , R j ] : L p → L p � . � b � BMO � j =1 p λ − 1 1 ν := µ p � 1 � b � BMO ( ν ) := sup | b ( x ) − � b � Q | dx ν ( Q ) Q Q

  31. Main Results (H., Lacey, Wick): Upper Bound: � [ b , T ] : L p ( µ ) → L p ( λ ) � � � b � BMO ( ν ) Lower Bound: n � � [ b , R j ] : L p ( µ ) → L p ( λ ) � . � b � BMO ( ν ) � j =1 p λ − 1 1 ν := µ p � 1 � b � BMO ( ν ) := sup | b ( x ) − � b � Q | dx ν ( Q ) Q Q

  32. Outline Introduction Bloom’s Result Main Results Upper Bound Lower Bound: Key Idea

  33. Upper Bound: Strategy � [ b , T ] : L p ( µ ) → L p ( λ ) � � � b � BMO ( ν )

  34. Upper Bound: Strategy � [ b , T ] : L p ( µ ) → L p ( λ ) � � � b � BMO ( ν ) I. Use a Representation Theorem to reduce the problem to bounding [ b , Dyadic Shift]

  35. Upper Bound: Strategy � [ b , T ] : L p ( µ ) → L p ( λ ) � � � b � BMO ( ν ) I. Use a Representation Theorem to reduce the problem to bounding [ b , Dyadic Shift] II. Bound: � [ b , Dyadic Shift] : L p ( µ ) → L p ( λ ) � � � b � BMO ( ν )

  36. Upper Bound: Strategy I. Use a Representation Theorem to reduce the problem to bounding [ b , Dyadic Shift]

  37. Upper Bound: Strategy I. Use a Representation Theorem to reduce the problem to bounding [ b , Dyadic Shift] Dyadic Grids:

  38. Upper Bound: Strategy I. Use a Representation Theorem to reduce the problem to bounding [ b , Dyadic Shift] Dyadic Grids: D 0 0

  39. Upper Bound: Strategy I. Use a Representation Theorem to reduce the problem to bounding [ b , Dyadic Shift] Dyadic Grids: D 0 0

  40. Upper Bound: Strategy I. Use a Representation Theorem to reduce the problem to bounding [ b , Dyadic Shift] Dyadic Grids: D 0 0

  41. Upper Bound: Strategy I. Use a Representation Theorem to reduce the problem to bounding [ b , Dyadic Shift] Dyadic Grids: D 0 0

  42. Upper Bound: Strategy I. Use a Representation Theorem to reduce the problem to bounding [ b , Dyadic Shift] Dyadic Grids: D 0 0

  43. Upper Bound: Strategy I. Use a Representation Theorem to reduce the problem to bounding [ b , Dyadic Shift] Dyadic Grids: D ω 0

  44. Upper Bound: Strategy I. Use a Representation Theorem to reduce the problem to bounding [ b , Dyadic Shift] Dyadic Grids: D ω

  45. Upper Bound: Strategy I. Use a Representation Theorem to reduce the problem to bounding [ b , Dyadic Shift] Dyadic Grids: D ω ◮ | I | = 2 − k , k ∈ Z , ∀ I ∈ D ;

  46. Upper Bound: Strategy I. Use a Representation Theorem to reduce the problem to bounding [ b , Dyadic Shift] Dyadic Grids: D ω ◮ | I | = 2 − k , k ∈ Z , ∀ I ∈ D ; ◮ I ∩ J ∈ {∅ , I , J } , ∀ I , J ∈ D ;

  47. Upper Bound: Strategy I. Use a Representation Theorem to reduce the problem to bounding [ b , Dyadic Shift] Dyadic Grids: D ω ◮ | I | = 2 − k , k ∈ Z , ∀ I ∈ D ; ◮ I ∩ J ∈ {∅ , I , J } , ∀ I , J ∈ D ; ◮ { I ∈ D : | I | = 2 − k } forms a partition of R .

  48. Upper Bound: Strategy I. Use a Representation Theorem to reduce the problem to bounding [ b , Dyadic Shift] Haar Functions: I ∈ D � � 1 h I := � ✶ I − − ✶ I + | I | 𝑱 " 𝑱 # 𝑱

  49. Upper Bound: Strategy I. Use a Representation Theorem to reduce the problem to bounding [ b , Dyadic Shift] Haar Functions: I ∈ D � � 1 h I := � ✶ I − − ✶ I + | I | 𝑱 " 𝑱 # 𝑱

  50. Upper Bound: Strategy I. Use a Representation Theorem to reduce the problem to bounding [ b , Dyadic Shift] Haar Functions: { h I : I ∈ D} = onb for L 2 . 𝑱 " 𝑱 # 𝑱

  51. Upper Bound: Strategy I. Use a Representation Theorem to reduce the problem to bounding [ b , Dyadic Shift] Haar Functions: � � f = f ( I ) h I I ∈D 𝑱 " 𝑱 # 𝑱

  52. Upper Bound: Strategy I. Use a Representation Theorem to reduce the problem to bounding [ b , Dyadic Shift] Petermichl’s Dyadic Shift: � � � 1 � √ h I − − h I + X ω f := f ( I ) . 2 I ∈D ω

  53. Upper Bound: Strategy I. Use a Representation Theorem to reduce the problem to bounding [ b , Dyadic Shift] Petermichl’s Dyadic Shift: � � � 1 � √ h I − − h I + X ω f := f ( I ) . 2 I ∈D ω 𝑱 " 𝑱 # 𝑱

  54. Upper Bound: Strategy I. Use a Representation Theorem to reduce the problem to bounding [ b , Dyadic Shift] Petermichl’s Dyadic Shift: � � � 1 � √ h I − − h I + X ω f := f ( I ) . 2 I ∈D ω 𝑱 " 𝑱 # 𝑱 𝑱

  55. Upper Bound: Strategy I. Use a Representation Theorem to reduce the problem to bounding [ b , Dyadic Shift] Petermichl’s Dyadic Shift: � � � 1 � √ h I − − h I + X ω f := f ( I ) . 2 I ∈D ω Petermichl (2000): Hf = c E ω ( X ω f )

  56. Upper Bound: Strategy I. Use a Representation Theorem to reduce the problem to bounding [ b , Dyadic Shift] Petermichl’s Dyadic Shift: � � � 1 � √ h I − − h I + X ω f := f ( I ) . 2 I ∈D ω Petermichl (2000): Hf = c E ω ( X ω f ) ⇒ [ b , H ] f = c E ω ([ b , X ω ] f )

  57. Upper Bound: Strategy I. Use a Representation Theorem to reduce the problem to bounding [ b , Dyadic Shift] Petermichl’s Dyadic Shift: � � � 1 � √ h I − − h I + X ω f := f ( I ) . 2 I ∈D ω Petermichl (2000): Hf = c E ω ( X ω f ) ⇒ [ b , H ] f = c E ω ([ b , X ω ] f ) � [ b , X ω ] : L p ( µ ) → L p ( λ ) � � � b � BMO ( ν )

  58. Upper Bound: Strategy I. Use a Representation Theorem to reduce the problem to bounding [ b , Dyadic Shift] For general CZOs on R n :

  59. Upper Bound: Strategy I. Use a Representation Theorem to reduce the problem to bounding [ b , Dyadic Shift] For general CZOs on R n : Hyt¨ onen Representation Theorem (2011).

  60. Upper Bound: Strategy II. Bound: � [ b , Dyadic Shift] : L p ( µ ) → L p ( λ ) � � � b � BMO ( ν )

  61. Upper Bound: Strategy II. Bound: � [ b , Dyadic Shift] : L p ( µ ) → L p ( λ ) � � � b � BMO ( ν ) Paraproducts: � � f ( I ) ✶ I � Π ∗ � b ( I ) � b ( I ) � f � I h I Π b f := b f := | I | I I

  62. Upper Bound: Strategy II. Bound: � [ b , Dyadic Shift] : L p ( µ ) → L p ( λ ) � � � b � BMO ( ν ) Paraproducts: � � f ( I ) ✶ I � Π ∗ � b ( I ) � b ( I ) � f � I h I Π b f := b f := | I | I I bf = Π b f + Π ∗ b f + Π f b

  63. Upper Bound: Strategy II. Bound: � [ b , Dyadic Shift] : L p ( µ ) → L p ( λ ) � � � b � BMO ( ν ) Paraproducts: � � f ( I ) ✶ I � Π ∗ � b ( I ) � b ( I ) � f � I h I Π b f := b f := | I | I I bf = Π b f + Π ∗ b f + Π f b b ( X f ) − X ( bf ) [ b , X ] f =

  64. Upper Bound: Strategy II. Bound: � [ b , Dyadic Shift] : L p ( µ ) → L p ( λ ) � � � b � BMO ( ν ) Paraproducts: � � f ( I ) ✶ I � Π ∗ b ( I ) � � b ( I ) � f � I h I Π b f := b f := | I | I I bf = Π b f + Π ∗ b f + Π f b b ( X f ) − X ( bf ) [ b , X ] f = (Π b X + Π ∗ b X − X Π b − X Π ∗ = b ) f

  65. Upper Bound: Strategy II. Bound: � [ b , Dyadic Shift] : L p ( µ ) → L p ( λ ) � � � b � BMO ( ν ) Paraproducts: � � f ( I ) ✶ I � Π ∗ � b ( I ) � b ( I ) � f � I h I Π b f := b f := | I | I I bf = Π b f + Π ∗ b f + Π f b b ( X f ) − X ( bf ) [ b , X ] f = (Π b X + Π ∗ b X − X Π b − X Π ∗ = b ) f + (Π X f b − X Π f b )

  66. Upper Bound: Strategy II. Bound: � [ b , Dyadic Shift] : L p ( µ ) → L p ( λ ) � � � b � BMO ( ν ) [ b , X ] f = (Π b X + Π ∗ b X − X Π b − X Π ∗ b ) f + (Π X f b − X Π f b )

  67. Upper Bound: Strategy II. Bound: � [ b , Dyadic Shift] : L p ( µ ) → L p ( λ ) � � � b � BMO ( ν ) [ b , X ] f = (Π b X + Π ∗ b X − X Π b − X Π ∗ + (Π X f b − X Π f b ) b ) f � �� � �

  68. Upper Bound: Strategy II. Bound: � [ b , Dyadic Shift] : L p ( µ ) → L p ( λ ) � � � b � BMO ( ν ) [ b , X ] f = (Π b X + Π ∗ b X − X Π b − X Π ∗ + (Π X f b − X Π f b ) b ) f � �� � � �� � �

  69. Upper Bound: Strategy II. Bound: � [ b , Dyadic Shift] : L p ( µ ) → L p ( λ ) � � � b � BMO ( ν ) [ b , X ] f = (Π b X + Π ∗ b X − X Π b − X Π ∗ + (Π X f b − X Π f b ) b ) f � �� � � �� � � �

  70. Upper Bound: Strategy II. Bound: � [ b , Dyadic Shift] : L p ( µ ) → L p ( λ ) � � � b � BMO ( ν ) [ b , X ] f = (Π b X + Π ∗ b X − X Π b − X Π ∗ + (Π X f b − X Π f b ) b ) f � �� � � �� � � � Known: X : L p ( w ) → L p ( w )

  71. Upper Bound: Strategy II. Bound: � [ b , Dyadic Shift] : L p ( µ ) → L p ( λ ) � � � b � BMO ( ν ) [ b , X ] f = (Π b X + Π ∗ b X − X Π b − X Π ∗ + (Π X f b − X Π f b ) b ) f � �� � � �� � � � Known: X : L p ( w ) → L p ( w ) 𝑀 " (𝜈) 𝑀 " (𝜈)

  72. Upper Bound: Strategy II. Bound: � [ b , Dyadic Shift] : L p ( µ ) → L p ( λ ) � � � b � BMO ( ν ) [ b , X ] f = (Π b X + Π ∗ b X − X Π b − X Π ∗ + (Π X f b − X Π f b ) b ) f � �� � � �� � � � Known: X : L p ( w ) → L p ( w ) Π ( 𝑀 " (𝜈) 𝑀 " (𝜇) 𝑀 " (𝜈)

  73. Upper Bound: Strategy II. Bound: � [ b , Dyadic Shift] : L p ( µ ) → L p ( λ ) � � � b � BMO ( ν ) [ b , X ] f = (Π b X + Π ∗ b X − X Π b − X Π ∗ + (Π X f b − X Π f b ) b ) f � �� � � �� � � � Known: X : L p ( w ) → L p ( w ) Π ( 𝑀 " (𝜈) 𝑀 " (𝜇) Π ( 𝑀 " (𝜈)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend