c0mbined texture microstruture phases strains structure
play

C0MBINED TEXTURE-MICROSTRUTURE-PHASES- - PowerPoint PPT Presentation

C0MBINED TEXTURE-MICROSTRUTURE-PHASES- STRAINS-STRUCTURE-REFLECTIVITY ANALYSIS D. Chateigner, CRISMAT-ENSICAEN, Caen, France M. Morales, LERMAT-ENSICAEN, Caen, France L. Lutterotti, DME, Trento, Italy Goals: Obtain structure,


  1. “C0MBINED TEXTURE-MICROSTRUTURE-PHASES- STRAINS-STRUCTURE-REFLECTIVITY ANALYSIS” D. Chateigner, CRISMAT-ENSICAEN, Caen, France M. Morales, LERMAT-ENSICAEN, Caen, France L. Lutterotti, DME, Trento, Italy

  2. • Goals: – Obtain structure, microstructure, texture and residual stresses of polyphased thin structures by one step methodology – The analysis should not be limited by phase overlapping, strong texture or complex structures • How/Why ? -> Rietveld + ODF analysis by cyclic full pattern fitting – Textured non-destructible materials – Texture / Structure / Strains / Phases … parameters correlation – Final program: MAUD, developed inside the ESQUI European project

  3. • Some examples: – Ferroelectric thin heterostructures: texture, structure, microstruct. – Nanocrystalline silicon thin films: texture, structure, anisotropic shapes – Amorphous silicon oxynitrides very thin films: Electron Density Profiles – Irradiated fluoroapatites: texture, phase, structure – Bi-based superconductor ceramics: texture, phase, structure, E. Guilmeau, poster VII-P4

  4. Texture from Spectra Orientation Distribution Function (ODF) From pole figures From spectra

  5. Residual Stresses and Rietveld • Macro elastic strain tensor (I kind) Fe Cu • Crystal anisotropic strains (II kind) C Macro and micro stresses Applied macro stresses

  6. How it works (RiTA) Nphases 2 S 2 θ i − 2 θ k ; n ∑ ∑ calc ( χ , φ ) = ( ) P I i S n L k F k ; n k ; n ( χ , φ ) A + bkg i n = 1 k Texture ∫ P k ( χ , φ ) = f ( g , ϕ ) d ϕ ϕ • from Generalized Spherical Harmonics: l l ∞ 1 n χ , φ * m Θ k φ k ∑ ∑ ∑ mn k n ( ) ( ) P k ( χ , φ ) = k l C l 2 l + 1 l = 0 n = − l m = − l l ∞ ∑ ∑ mn T l mn ( g ) f ( g ) = C l l = 0 m , n = − l • from the WIMV iterative process: ⎡ ⎤ ⎢ ⎥ n 0 f ( g ) f ( g ) n 1 f ( g ) N + ⎢ ⎥ = � 1 ⎢ ⎥ ( ) ⎥ n P ( y ) ∏ I ⎢ hkl ⎣ ⎦ hkl

  7. Layering top film ( ( ) ) ( ( ) ) C g 1 exp Tg / cos / 1 exp 2 T / sin cos = − − µ χ − − µ ω χ 1 2 χ ( ( ) ) ( ( ) ) cov. layer top film ' ' ' ' C C exp g T / cos / exp 2 T / sin cos ∑ ∑ = − µ χ − µ ω χ 2 i i i i χ χ

  8. Integrated Intensities Specular Reflectivity (Le Bail extraction) + Electronic Density Profiles WIMV, E-WIMV Harmonic refinement Roughnesses, Parrat, Densities & DWBA, EDP, genetic algorithm Thicknesses Orientation Distribution Function Rietveld refinement Multiphased, layered samples: Thicknesses Structural + Structure, Microstructural Anisotropic Sizes (Popa rules) parameters µ - strains, Stacking faults (Warren) Phase ratio (amorphous + crystalline) Residual stresses Popa-Balzar analysis, Stress Distribution Function sin 2 ψ

  9. Methodology implementation

  10. Experimental needs Spectrometer space mapping: - instrumental resolution correction - instrumental misalignments ω = 20° ω = 40° 60 ° 60 ° χ χ 0° 0°

  11. Ferroelectric thin heterostructure • Substrate: 50 nm of Pt electrode + TiO 2 /SiO 2 /Si(100) • 400 nm of Pb 0.76 Ca 0.24 TiO 3 (PTC) film deposited by spin coating of a sol-gel solution (CSIC Madrid).

  12. PTC film: harmonic texture model Triclinic sample symmetry: 1245 parameters only for PTC (L max = 22) Reducing sample symmetry to fiber and L max to 16: 24 parameters For Pt layer: fiber texture, L max = 22 -> 15 parameters Rw = 14.78 % Fitting Observed

  13. PTC film fitting: WIMV WIMV 2 layers Fitting 2 phases Rw = 25.5% R B = 42.6 % 792 spectra Observed

  14. 001, 100 101, 110 111, 111-Pt 002, 200 102 112, 211 202, 220 200-Pt 201, 210 220-Pt R W = 13%; R B = 12%; R exp = 22%.(Rietveld) R W = 5%; R B = 6% (E-WIMV)

  15. Structural parameters Pt layer a (Å) thickness (nm) R factors (%) non-treated substrate A n n e a l i n g o f t h e Pt 3.9108(1) 45.7(3) R W =13, R B =12, R exp =22 substrate does not annealed substrate introduce significant Pt 3.9100(4) 46.4(3) R W =8, R B =14, R exp =21 variations on the Pt (Recryst. 1h) 3.9114(2) 47.8(3) R W =9, R B =20, R exp =21 structure of the Pt layer Pt (Recryst. 2h) 3.9068(1) 46.9(3) R W =9, R B =14, R exp =22 Pt (Recryst. 3h) 3.9141(4) 47.5(9) R W =27, R B =12, R exp =21 PTC film a (Å) c (Å) thickness (nm) Recrystallisation on non-treated substrate reduces the stress on PCT 3.9156(1) 4.0497(6) 272.5(13) on annealed substrate t h e f i l m , a n d , PCT 3.8920(6) 4.0187(8) 279.0(9) increases the lattice PCT (Recryst. 1h) 3.8929(2) 4.0230(4) 266.1(11) parameters PCT (Recryst. 2h) 3.8982(2) 4.0227(4) 258.4(9) PCT (Recryst. 3h) 3.9001(4) 4.0228(11) 253.6(29)

  16. Pt layer 75 <111> fibre orientation 1 m.r.d. New information on the Pt layer provided by the combined method 0.01 Texture index F 2 (mrd 2 ) R factors (%) non-treated substrate Pt 129 R W =13, R B =12 annealed substrate Annealing of the substrate, which Pt 199 R W =8, R B =14 involves crystal growth, results in Pt (Recryst. 1h) 199 R W =9, R B =20 an increase of the degree of Pt (Recryst. 2h) 195 R W =9, R B =14 orientation of the Pt layer. Pt (Recryst. 3h) 222 R W =27, R B =12

  17. Texture PCT film 9.5 Texture index 1 m.r.d. F 2 (mrd 2 ) non-treated substrate PTC 5.2 PCT film on untreated substrate annealed substrate Strong <100> orientation PTC 2.1 0.01 PTC (Recryst. 1h) 2.1 PTC (Recryst. 2h) 2.5 5.8 PTC (Recryst. 3h) 2.5 Effect on the degree of 1 m.rd. orientation of the PCT film PCT film on annealed substrate Strong <111> orientation Effect of the annealing of the substrate in the type of texture 0.04 developed

  18. Si nanocrystalline thin films χ = 35° χ = 0° broad, anisotropic diffracted lines, textured samples

  19. RX Anisotropic sizes (Å) Texture parameters Reliability factors (%) Sample d (cm) a (Å) thickness Maximum minimum Texture index RP 0 R w R B R exp F 2 (m.r.d 2 ) (nm) <111> <220> <311> (m.r.d.) (m.r.d.) A 4 5.4466 (3) --- 94 20 27 1.95 0.4 1.12 1.72 4.0 3.7 3.5 B 6 5.4439 (2) 711 (50) 101 20 22 1.39 0.79 1.01 0.71 4.9 4.3 4.2 C 7 5.4346 (4) 519 (60) 99 40 52 1.72 0.66 1.05 0.78 4.3 4.0 3.9 D 8 5.4461 (2) 1447 (66) 100 22 33 1.57 0.63 1.04 0.90 5.5 4.6 4.5 E 10 5.4462 (2) 1360 (80) 98 20 25 1.22 0.82 1.01 0.56 5.0 3.9 4.0 F 12 5.4452 (3) 1110 (57) 85 22 26 1.59 0.45 1.05 1.08 4.2 3.5 3.7 G 6 5.4387 (3) 1307 (50) 89 22 28 1.84 0.71 1.01 1.57 5.2 4.7 4.2 H 12 5.4434 (2) 1214 (18) 88 22 24 2.77 0.50 1.12 2.97 5.0 4.5 4.3

  20. A B C 001 Inverse Pole Figures a-SiO 2 D E F G H 010 110 221 (100)-Si 332 011 443 111 113 111 0 001 101 100 min 0 max

  21. Amorphous Si-O-N thin films: Electron Density Profiles (S. Banerjee, Calcutta)

  22. 2 ∞ 1 d ρ - iq z R(q ) e dz = ∫ z z dz ρ ∞ − ∞ EDP SIMS

  23. Irradiated fluoroapatite (S. Miro, F. Studer, CRISMAT) • as synthesized • irradiated 10 13 Kr

  24. • 0 5.10 12 10 13 Crystalline phase A (Å) 9.336(3) 9.377(4) 9.4236(4) C (Å) 6.855(2) 6.891(3) 6.911(1) <t> (Å) 2936(387) 2940(500) 2911(545) < ε > (rms) 0 0 0.0025(4) Vol Fraction (%) 100 63 15 "Amorphous phase" A (Å) - 9.45(2) 9.99(2) C (Å) - 7.08(2) 7.02(3) <t> (Å) - 40(4) 24(2)

  25. Conclusions • a: Texture affects phase ratio and structure determination • b: Stresses shift peaks then affects structure and texture determination • c: Incorrectly determined structure affects texture (go to a) • Combined analysis may be a solution, unless you can destroy your sample or are not interested in macroscopic anisotropy ... • If you think you can destroy it, perhaps think twice • more information is always needed: local probes ...

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend