branching random walk with stretched exponential tails
play

Branching random walk with stretched exponential tails Piotr - PowerPoint PPT Presentation

Branching random walk with stretched exponential tails Piotr Dyszewski (TUM & UWr) June 5, 2020 M n X X 0 the particles reproduce according to a Galton-Watson process with reproduction mean m > 1 the displacements are iid


  1. Branching random walk with stretched exponential tails Piotr Dyszewski (TUM & UWr) June 5, 2020

  2. M n X ′ X 0 ◮ the particles reproduce according to a Galton-Watson process with reproduction mean m > 1 ◮ the displacements are iid copies of X such that P [ X > t ] ∼ e − t r , r ∈ ( 0, 1 ) ◮ M n = the position of the rightmost particle

  3. Theorem (P .D, N. Gantert, T. Höfelsauer) Take X such that E X = 0 and E X 2 = 1 . Suppose that (. . . ) and that X has a stretched exponential tail, i.e. P [ X > t ] ∼ e − t r , r ∈ ( 0, 1 ) . 0, 2 Then there are constants γ , σ , α such that: for r ∈ � � , 3 1 M n − α n r → d F ( x ) = E � − γ We − x �� � exp 1 r − 1 σ n � 2 � and for r ∈ 3 , 1 1 M n − α n → 1 r 2 σ , n 2 − 1 r where W is a martingale limit associated with the underlying Galton-Watson process.

  4. Let ( Z n ) be a Galton-Watson process with reproduction mean m > 1. Assume for simplicity P [ Z 1 = 0 ] = 0. n ≥ 0 N n be the corresponding Galton-Watson tree. Let T ⊆ � ∅ | x | = 1 0 1 | x | = 2 00 10 11 12 | x | = 3 000 001 002 003

  5. ∅ X 0 X 1 | x | = 1 0 1 X 10 X 12 X 00 X 11 | x | = 2 00 10 11 12 X 000 X 003 X 001 X 002 | x | = 3 000 001 002 003 | x | = n X y , y ∈ T iid For x ∈ T , V ( x ) = ∑ X y y ≤ x M n = max V ( x ) | x | = n

  6. P [ X > t ] ∼ e − t r , r ∈ ( 0, 1 ) P [ X 1 + X 2 > t ] ∼ P [ max { X 1 , X 2 } > t ] S n = ∑ 1 ≤ k ≤ n X k , X ∗ n = max 1 ≤ k ≤ n X k P [ S n > t n ] ∼ ? � � � � 1 1 X ∗ r − s ≈ sup P [ S n − 1 > s ] P S n > cn s P n > cn r − s 2 � � � r � 1 r − s ≈ sup − n exp cn 2 n s � 1 r − rc r − 1 n 2 − 1 � � S n − 1 > rc r − 1 n 2 − 1 � X ∗ ≈ P n > cn P r r � 1 � � � n 3 − 2 �� − c r n + O ∼ n exp P S n > cn r r

  7. If | x | = n , then n d ∑ V ( x ) = S n = X k . k = 1 � � � � 1 1 = P ∃ | x | = n , V ( x ) > cn P M n > cn r r    ∑ � ≥ 1 = P ✶ � 1  V ( x ) > cn r | x | = n    ∑ � 1 �  = E [ Z n ] P ≤ E ✶ � S n > cn r 1 � V ( x ) > cn r | x | = n � 1 � = m n P S n > cn r ∼ m n exp {− c r n ( 1 + o ( 1 )) } M n 1 → α = log ( m ) r 1 n r

  8. The first term in the asymptotic expansion of M n is related to the biggest displacement, i.e. N n = max X y . | y |≤ n Proposition 1 N n − α n r → d H d = E [ exp {− γ ′ We − x } ] 1 r − 1 σ n Proof. x n → ∞ � � P [ X ≤ x n ] Y n P [ N n ≤ x n ] = E [ P [ N n ≤ x n | ( Z n ) ] ] = E ∼ E [ exp {− Y n P [ X > x n ] } ] Y n = # {| x | ≤ n } = ∑ n k = 1 Z k .

  9. Proof continued . m − n Z n is a positive martingale Z n m n = W > 0 lim n → ∞ m m − 1 W m n Y n ∼ 1 1 r − 1 x r + σ n x n = α n m � r � m − 1 W m n exp � � 1 1 r − 1 x r + σ n Y n P [ X > x n ] ∼ − α n m m − 1 W m n exp � � − α r n − α r − 1 r σ x ∼ ∼ γ ′ W exp {− x } σ = α 1 − r m γ ′ = m − 1 r 1 � � N n − α n r = P [ N n ≤ x n ] → E [ exp {− γ ′ We − x } ] ≤ x P 1 r − 1 σ n

  10. M n N n → α → α 1 1 n n r r � � 1 V ( x ) = ∑ X v : X v ≪ α n = o ( . . . ) max r | x | = n v ≤ x # {| v | ≤ n } = Y n ≈ m n � 1 � ≈ m o ( n ) | v | ≤ n : X v ≈ α n # r � 1 � | v | ≤ n : X v ≈ α n is a small subset of {| v | ≤ n } r

  11. 1 ≈ α n r V ( x ) = R 1 ( x ) + V 0 ( x ) + N ( x ) + R 2 ( x ) = V 0 ( x ) + N ( x )

  12. M n ≈ max { V 0 ( x ) + N ( x ) } 1 N ( x ) ≈ α n r d � 1 V 0 ( x ) = S n − o ( n ) � X k ≪ α n � r The contribution of V 0 ( x ) is at most � � n 2 − 1 V 0 ( x ) = O r on the other hand d 1 1 r − 1 H ( 1 + o ( 1 )) r + σ n N n = max X v = α n | v |≤ n

  13. � r − 1 � 3 , n 2 − 1 1 If r < 2 r = o n and so d 1 1 r − 1 H ( 1 + o ( 1 )) r + σ n M n ≈ N n = α n 1 1 M n − α n ∼ N n − α n r r → d H d = E [ exp {− γ ′ We − x } ] 1 1 r − 1 r − 1 σ n σ n M n − N n → 0 1 r − 1 n

  14. r − 1 = o � � 1 n 2 − 1 If r > 2 3 , n r 1 ≈ α n r M n ≈ max { V 0 ( x ) + N ( x ) } 1 M n − α n → 1 r n 2 − 1 2 σ r

  15. r − 1 = √ 3 , n 2 − 1 1 If r = 2 r = n n M n ≈ max { N ( x ) + V 0 ( x ) } d d N x = Φ ( · ) = N ( 0, 1 ) . 1 � 1 � M n − α n N ( x ) − α n + 1 r r σ √ σ √ ≈ max σ N x n n  � Y n  � 1 � � 1 M n − α n N ( x ) − α n + 1 r r σ √ ≤ t ≈ E σ √ σ N > t P  P  n n � � �� � γ ′ W e − y ( 1 − Φ ( σ ( t − y )) dy ≈ E exp � − γ We − t �� � = E exp

  16. Theorem (P .D, N. Gantert, T. Höfelsauer) Take X such that E X = 0 and E X 2 = 1 . Suppose that (. . . ) and that X has a stretched exponential tail, i.e. P [ X > t ] ∼ e − t r , r ∈ ( 0, 1 ) . 0, 2 Then there are constants γ , σ , α such that: for r ∈ � � , 3 1 M n − α n r → d F ( x ) = E � − γ We − x �� � exp , 1 r − 1 σ n � 2 � and for r ∈ 3 , 1 1 M n − α n → 1 r n 2 − 1 2 σ r where W is a martingale limit associated with the underlying Galton-Watson process.

  17. References I Piotr Dyszewski, Nina Gantert, and Thomas Höfelsauer, The maximum of a branching random walk with stretched exponantial tails , https://arxiv.org/abs/2004.03871 Nina Gantert, The maximum of a branching random walk with semiexponential increments , Annals of Probability 28 (2000), no. 3, 1219–1229. A. V. Nagaev, Integral limit theorems taking large deviations into account when Cramér’s condition does not hold. I , Theory of Probability & Its Applications 14 (1969), no. 1, 51–64.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend