braiding fluxes in pauli hamiltonians
play

Braiding fluxes in Pauli Hamiltonians Anyons for anyone J. Avron - PowerPoint PPT Presentation

Braiding fluxes in Pauli Hamiltonians Anyons for anyone J. Avron O. Kenneth Department of Physics, Technion Montreal, 2014 Avron, Kenneth (Technion) Braiding fluxes Montreal 2014 1 / 34 Outline Motivation 1 Non abelian anyons Aharonov


  1. Braiding fluxes in Pauli Hamiltonians Anyons for anyone J. Avron O. Kenneth Department of Physics, Technion Montreal, 2014 Avron, Kenneth (Technion) Braiding fluxes Montreal 2014 1 / 34

  2. Outline Motivation 1 Non abelian anyons Aharonov Casher Braiding fluxes 2 Zero modes Adiabatically Moving fluxes Metric and connection Magic Avron, Kenneth (Technion) Braiding fluxes Montreal 2014 2 / 34

  3. Motivation Non abelian anyons Outline Motivation 1 Non abelian anyons Aharonov Casher Braiding fluxes 2 Zero modes Adiabatically Moving fluxes Metric and connection Magic Avron, Kenneth (Technion) Braiding fluxes Montreal 2014 3 / 34

  4. Motivation Non abelian anyons Gates Unitary: | ψ � �→ U| ψ � U ⇒ dim ( H ) = 2 n n − qubits = Universal single qubit gates: � 1 � 1 � � 1 0 1 √ = , = H e i π/ 4 e i π/ 4 1 − 1 0 2 Universal two qubits: • Z Avron, Kenneth (Technion) Braiding fluxes Montreal 2014 4 / 34

  5. Motivation Non abelian anyons Anyons and quantum computing Desiderata Fault tolerance Gap H = Protected subspace Topological quantum computing—non-abelain anyons Lindner & Stern, Science Avron, Kenneth (Technion) Braiding fluxes Montreal 2014 5 / 34

  6. Motivation Non abelian anyons Non abelian anyons Theory and experiment Theory Localized modes of interacting) fermions or spins Theoretical realization Anyons in FQHE √ Majoranas: electron / 2 Experiment Fractional charges in FQHE, Evidence for Majorana Avron, Kenneth (Technion) Braiding fluxes Montreal 2014 6 / 34

  7. Motivation Aharonov Casher Outline Motivation 1 Non abelian anyons Aharonov Casher Braiding fluxes 2 Zero modes Adiabatically Moving fluxes Metric and connection Magic Avron, Kenneth (Technion) Braiding fluxes Montreal 2014 7 / 34

  8. Motivation Aharonov Casher Aharonov Casher Topological Zero modes Geometric setting: Φ T Pauli equation: spin 1 / 2, g = 2 � Φ T = 1 � 2 ≥ 0 , � ( − i ∇ − A ) · σ B dx ∧ dy 2 π Zero modes: Zero modes Continuum Avron, Kenneth (Technion) Braiding fluxes Montreal 2014 8 / 34

  9. Motivation Aharonov Casher Aharnonov Casher holomorphy Decoupling in 2-D: � � 0 ∂ z − iA z ( − i ∇ − A ) · σ = − 2 i ∂ z − i ¯ ¯ A z 0 Zero modes: � � ( ψ, 0 ) t = 0 , = ⇒ ( ¯ ∂ z − i ¯ ( − i ∇ − A ) · σ A ) ψ = 0 � �� � 1 − st order pde Holomorphy: z ) ∈ Ker ( ¯ ∂ z − i ¯ ψ ( z , ¯ ψ ( z , ¯ A ) ∋ P ( z ) z ) ���� holomorphic Avron, Kenneth (Technion) Braiding fluxes Montreal 2014 9 / 34

  10. Motivation Aharonov Casher Aharonov and Casher Index Poissons’ equation–source B log ψ 0 = i ∂ z ¯ ∂ z ¯ ∂ z A ���� ���� ∆ B Polynomial decay: ∆ − 1 = 1 z →∞ | z | − Φ T , ψ 0 = exp (∆ − 1 B ) − → 2 π log z Aharonov-Casher Index theorem: Number of zero modes D = ⌈ Φ T ⌉ − 1 Avron, Kenneth (Technion) Braiding fluxes Montreal 2014 10 / 34

  11. Motivation Aharonov Casher Confined and free zero modes Φ a > 1 vs Φ a < 1 Two types of Charge-Flux composite Φ a > 1 Φ b = Φ b ′ = 3 / 4 Avron, Kenneth (Technion) Braiding fluxes Montreal 2014 11 / 34

  12. Braiding fluxes Braiding fluxes Gates from braiding fluxes curvature Φ a Φ b What gates can you make by braiding fluxons? Catch 22: Holonomy without curvature! Φ a ∈ R ; Think of 1 / 2 < Φ a < 1 No gap protection Avron, Kenneth (Technion) Braiding fluxes Montreal 2014 12 / 34

  13. Braiding fluxes Adiabatic evolution AB-Anyons Adiabatic evolution for moving fluxes Gapless Gauge issues Defrosting Confined zero modes Super Critical fluxons; Φ a > 1 Aharonov-Bohm abelian phases e 2 π i Φ 2 Φ 1 Φ 2 Localized zero modes Avron, Kenneth (Technion) Braiding fluxes Montreal 2014 13 / 34

  14. Braiding fluxes Deconfined modes Anyons Holonomy–Abelian & non-abelian curvature & topological curvature Topological if: D = N − 1 Identical fluxes 1 − 1 N < Φ < 1 � 1 − ν � ν ν = e − 2 π i Φ Burau rep of braid group : , 1 0 Avron, Kenneth (Technion) Braiding fluxes Montreal 2014 14 / 34

  15. Braiding fluxes Zero modes Outline Motivation 1 Non abelian anyons Aharonov Casher Braiding fluxes 2 Zero modes Adiabatically Moving fluxes Metric and connection Magic Avron, Kenneth (Technion) Braiding fluxes Montreal 2014 15 / 34

  16. Braiding fluxes Zero modes Aharonov and Casher Fluxons Log-Superposition: ∂ z log ψ = i ¯ ¯ A = ⇒ ( A 1 + A 2 , ψ 1 ψ 2 ) (Φ 1 , ζ 1 ) ζ 2 = position Φ 3 = flux (Φ 4 , ζ 4 ) Avron, Kenneth (Technion) Braiding fluxes Montreal 2014 16 / 34

  17. Braiding fluxes Zero modes Weak individuals, Φ a < 1, strong community, Φ T > 1 Point fluxes (Φ 1 , ζ 1 ) (Φ 2 , ζ 2 ) (Φ 5 , ζ 5 ) (Φ 4 , ζ 4 ) Zero modes; 0 < Φ a < 1 � ( z − ζ a ) − Φ a , ψ ( z ; ζ ) = P ( z ) deg ( P ) < Φ T − 1 ���� a polynom Avron, Kenneth (Technion) Braiding fluxes Montreal 2014 17 / 34

  18. Braiding fluxes Adiabatically Moving fluxes Outline Motivation 1 Non abelian anyons Aharonov Casher Braiding fluxes 2 Zero modes Adiabatically Moving fluxes Metric and connection Magic Avron, Kenneth (Technion) Braiding fluxes Montreal 2014 18 / 34

  19. Braiding fluxes Adiabatically Moving fluxes Bad defrosting Dead frozen Defrosted Hamiltonian � � ζ �→ ζ ( t ) H ( A ζ ) �→ H A ζ ( t ) � �� � control Wrong sources � A = J E fluxon (Φ , ζ ) E Current Avron, Kenneth (Technion) Braiding fluxes Montreal 2014 19 / 34

  20. Braiding fluxes Adiabatically Moving fluxes Gauge fields of moving flux Defrosting and Gauge freedom E Motion generates weak electric fields E = − v × B v � �� � fluxon localized on fluxon Defrosted potentials A = A ( z − ζ ( t )) , A 0 = − v · A ( z − ζ ( t )) � �� � Inertial frame Closed path in control ζ a = ⇒ closed path in ( A 0 , A ) Avron, Kenneth (Technion) Braiding fluxes Montreal 2014 20 / 34

  21. Braiding fluxes Adiabatically Moving fluxes Topology in Gappless Adiabatic evolution What is the time scale? Gapless. Distance between fluxon defines time scale: time scale = m h ( distance ) 2 , distance = | ζ a − ζ b | � �� � � �� � length scale dim analysis Re ζ Energy Im ζ Control Avron, Kenneth (Technion) Braiding fluxes Montreal 2014 21 / 34

  22. Braiding fluxes Adiabatically Moving fluxes Parallel transport Connection Zero modes: � : Span { z j ψ 0 | j = 0 , . . . , D − 1 } ( z − ζ a ( t )) − Φ a P D , � z | ψ 0 � = ���� � �� � a projection zero modes � �� � ζ a = ζ b = ···⇒| ψ 0 � = ∞ Evolution within P D D � p j ( t ) z j , ψ ( z , t ) = P ( z , t ) ψ 0 , P ( z , t ) = � �� � 0 polynom Connection P D D t ψ = 0 , D t = ∂ t − iA 0 � �� � � �� � No motion covariant derivative Avron, Kenneth (Technion) Braiding fluxes Montreal 2014 22 / 34

  23. Braiding fluxes Metric and connection Outline Motivation 1 Non abelian anyons Aharonov Casher Braiding fluxes 2 Zero modes Adiabatically Moving fluxes Metric and connection Magic Avron, Kenneth (Technion) Braiding fluxes Montreal 2014 23 / 34

  24. Braiding fluxes Metric and connection The connection Metric Geometric–independent of time schedule:   �   i P D d | ψ � = P D d x a · A a | ψ �   ���� � �� � a flux displace i ∂ a | ψ � A (non-orthogonal) basis z j | ψ � 0 , j = 0 , . . . , D − 1 Hilbert space metric ( g ) jk ( ζ, ¯ z j z k | ψ 0 � = � ψ 0 | ¯ ζ ) � �� � control Diverges when fluxons collide: ( g ) jk ( ζ a = ζ b = . . . ) = ∞ Avron, Kenneth (Technion) Braiding fluxes Montreal 2014 24 / 34

  25. Braiding fluxes Metric and connection Beauty parlor Connection P ( z , t ) = � D 0 p j ( t ) z j = ⇒ p ( t ) = ( p 0 , . . . , p D − 1 ) g − 1 ( ∂ ζ g ) 0 = ( d + A ) p , A = � �� � semi pure gauge Semi-pure d = ∂ + ¯ g − 1 ( ∂ g ) � = g − 1 d g A = , ∂ � �� � � �� � pure gauge semi pure gauge Avron, Kenneth (Technion) Braiding fluxes Montreal 2014 25 / 34

  26. Braiding fluxes Metric and connection Factorization holomorphic × anti-holomorphic Heuristics z j z k | ψ 0 ( ζ ) � ( g ) jk ( ζ, ¯ ¯ ζ ) = � ψ 0 ( ζ ) | , � �� � � �� � anti − holomorphic holomorphic Factorization of metric g ( ζ, ¯ = Ψ ∗ ( ζ ; Φ) ζ, Φ) G (Φ) Ψ( ζ ; Φ) � �� � � �� � � �� � � �� � D × D D × ( N − 1 ) ( N − 1 ) × ( N − 1 ) ( N − 1 ) × D Avron, Kenneth (Technion) Braiding fluxes Montreal 2014 26 / 34

  27. Braiding fluxes Metric and connection Branch structure Ψ Fluxons and cuts The matrix Ψ � ζ a dz z k ψ 0 ( z ; ζ ) , Ψ ak ( ζ ) = a ∈ 1 , . . . , N − 1 , k ∈ 0 , . . . , D − 1 ξ N ∞ 3 ✻ y Σ 3 t ζ 3 ∞ 2 Σ 2 t ζ 2 ∞ 1 Σ 1 t ζ 1 ∞ 0 = ∞ 3 ✲ x Avron, Kenneth (Technion) Braiding fluxes Montreal 2014 27 / 34

  28. Braiding fluxes Magic Outline Motivation 1 Non abelian anyons Aharonov Casher Braiding fluxes 2 Zero modes Adiabatically Moving fluxes Metric and connection Magic Avron, Kenneth (Technion) Braiding fluxes Montreal 2014 28 / 34

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend