bounds on amplitudes and efts
play

Bounds on Amplitudes and EFTs Brando Bellazzini IPhT - CEA/Saclay - PowerPoint PPT Presentation

Bounds on Amplitudes and EFTs Brando Bellazzini IPhT - CEA/Saclay based on 1605.06111 and work in progress Eltville, Burg Crass, EFTs for collider physics, Flavor phenomena and EWSB, Sept 15th 2016 Hierarchy of scales UV a blessing


  1. Bounds on Amplitudes and EFTs Brando Bellazzini IPhT - CEA/Saclay based on 1605.06111 and work in progress Eltville, Burg Crass, ‘EFTs for collider physics, Flavor phenomena and EWSB’, Sept 15th 2016

  2. Hierarchy of scales Λ UV a blessing… g ρ f π Λ IR

  3. Hierarchy of scales Λ UV a blessing… g ρ f π - small parameter 
 E/ Λ UV Λ IR - emerging patterns 
 O ( x ) L IR = L ∆ ≤ 4 + X - suppress dangerous operators 
 Λ ∆ − 4 UV O

  4. Hierarchy of scales Λ UV a blessing… or a curse g ρ f π - small parameter 
 E/ Λ UV Λ IR - emerging patterns 
 O ( x ) L IR = L ∆ ≤ 4 + X - suppress dangerous operators 
 Λ ∆ − 4 UV O

  5. Hierarchy of scales Λ UV a blessing… or a curse g ρ f π - small parameter 
 E/ Λ UV Λ IR - emerging patterns 
 O ( x ) L IR = L ∆ ≤ 4 + X - suppress dangerous operators 
 Λ ∆ − 4 UV O large couplings from a strong sector may help L = g 2 ( ∂ H 2 ) 2 e.g. in CHM: ∗ m 2 ∗

  6. The EFT paradigm UV O i ( x ) X L IR = IR c i Λ ∆ − 4 UV i EFT encodes UV-info via c i Finite set of C’s is needed at any order in E/ Λ UV Power counting = understanding = symmetries

  7. Symmetry <—> Softness Higher dim-operators may dominate the amplitude within EFT just suppress relevant, marginal and less-irrelevant operators by symmetries

  8. Symmetry <—> Softness Higher dim-operators may dominate the amplitude within EFT just suppress relevant, marginal and less-irrelevant operators by symmetries Example ψ i ∂ψ − m ∗ ¯ ¯ ψψ + . . . (1)

  9. Symmetry <—> Softness Higher dim-operators may dominate the amplitude within EFT just suppress relevant, marginal and less-irrelevant operators by symmetries Example ψ i ∂ψ − m ∗ ¯ ¯ i @ − ✏ · m ∗ ¯ ¯ ψψ + . . . + . . . (1) χ –sym

  10. Symmetry <—> Softness Higher dim-operators may dominate the amplitude within EFT just suppress relevant, marginal and less-irrelevant operators by symmetries Example ψ i ∂ψ − m ∗ ¯ ¯ i @ − ✏ · m ∗ ¯ ¯ ψψ + . . . + . . . (1) χ –sym 1-to-1 amplitude dominated by a less-relevant operator M (1 → 1) ∼ 1 ✏ · m ∗ < E < m ∗ E

  11. Symmetry <—> Softness Higher dim-operators may dominate the amplitude within EFT just suppress relevant, marginal and less-irrelevant operators by symmetries Example ψ i ∂ψ − gA µ ¯ ¯ (2) ψγ µ ψ + . . .

  12. Symmetry <—> Softness Higher dim-operators may dominate the amplitude within EFT just suppress relevant, marginal and less-irrelevant operators by symmetries Example � µ + g 2 � µ ) 2 + . . . i @ − ✏ · g ∗ A µ ¯ ¯ ( ¯ ψ i ∂ψ − gA µ ¯ ¯ (2) ψγ µ ψ + . . . ∗ m 2 g ⌧ 1 ∗

  13. Symmetry <—> Softness Higher dim-operators may dominate the amplitude within EFT just suppress relevant, marginal and less-irrelevant operators by symmetries Example � µ + g 2 � µ ) 2 + . . . i @ − ✏ · g ∗ A µ ¯ ¯ ( ¯ ψ i ∂ψ − gA µ ¯ ¯ (2) ψγ µ ψ + . . . ∗ m 2 g ⌧ 1 ∗ dominated by dim-6 at intermediate energy ✏ · m ∗ < E < m ∗ g SM g SM g ∗ g ∗ M (2 → 2) = g 2 E 2 ✓ ◆ 1 + 1 SM E 2 ✏ 2 m 2 ∗ 1 /m 2 1 /E 2 ∗ Amplitude runs fast within the validity of EFT

  14. Symmetry <—> Softness Higher dim-operators may dominate the amplitude within EFT just suppress relevant, marginal and less-irrelevant operators by symmetries Examples ∗ π 2 + g 2 ∗ π 4 + . . . ( ∂π ) 2 − m 2 (3)

  15. Symmetry <—> Softness Higher dim-operators may dominate the amplitude within EFT just suppress relevant, marginal and less-irrelevant operators by symmetries Examples ∗ ⇡ 4 ) + g 2 ∗ π 2 + g 2 ∗ π 4 + . . . ∗ ⇡ 2 + ✏ 2 g 2 ( @⇡ ) 4 + . . . ( ∂π ) 2 − m 2 (3) ( @⇡ ) 2 − ✏ 2 ( m 2 ∗ m 4 π → π + c ∗

  16. Symmetry <—> Softness Higher dim-operators may dominate the amplitude within EFT just suppress relevant, marginal and less-irrelevant operators by symmetries Examples ∗ ⇡ 4 ) + g 2 ∗ π 2 + g 2 ∗ π 4 + . . . ∗ ⇡ 2 + ✏ 2 g 2 ( @⇡ ) 4 + . . . ( ∂π ) 2 − m 2 (3) ( @⇡ ) 2 − ✏ 2 ( m 2 ∗ m 4 π → π + c ∗ E 4 ✓ ◆ M (2 → 2) = g 2 ∗ ✏ 4 1 + Amplitude runs fast within the validity of EFT: m 4 ∗ ✏ 4 ✏ · m ∗ < E < m ∗

  17. Running Coupling g ∗ = M 4 E 2 E 4 g SM E m ∗

  18. Running Coupling LHC g ∗ = M 4 E 2 LEP E 4 g SM E m ∗

  19. Running Coupling LHC g ∗ = M 4 E 2 LEP E 4 g SM E m ∗ V T E 4 g 2 W 4 ∼ g 2 ∗ ‘remedios’: strongly int. transv. vectors m 4 µ ν ∗ m 4 1603.03064 Liu, Pomarol, Rattazzi, Riva ∗ ∗ V T

  20. Running Coupling LHC g ∗ = M 4 E 2 Freeze-out E 4 g SM E m ∗ V T E 4 g 2 W 4 ∼ g 2 ∗ ‘remedios’: strongly int. transv. vectors m 4 µ ν ∗ m 4 1603.03064 Liu, Pomarol, Rattazzi, Riva ∗ ∗ V T

  21. Running Coupling LHC g ∗ = M 4 E 2 Freeze-out E 4 g SM E m ∗ V T E 4 g 2 W 4 ∼ g 2 ∗ ‘remedios’: strongly int. transv. vectors m 4 µ ν ∗ m 4 1603.03064 Liu, Pomarol, Rattazzi, Riva ∗ ∗ V T DM as light pseudo-goldstino 1607.02474 Brugisser, Riva, Urbano *

  22. Running Coupling FCC g ∗ = M 4 E 2 LHC E 4 g SM E m ∗ V T E 4 g 2 W 4 ∼ g 2 ∗ ‘remedios’: strongly int. transv. vectors m 4 µ ν ∗ m 4 1603.03064 Liu, Pomarol, Rattazzi, Riva ∗ ∗ V T DM as light pseudo-goldstino 1607.02474 Brugisser, Riva, Urbano *

  23. How fast? ( ∂π ) 2 π 2 Goldstones ∼ E 2 ( ¯ ψγ µ ψ ) 2 4-Fermions … can amplitudes be softer than E 4 ? (within an EFT) ( ∂σ ) 4 dilaton ψ 2 ⇤ ψ 2 ¯ Goldstino ∼ E 4 F 4 remedios µ ν …

  24. UV-IR connection (well known) 
 e.g. hep-th/0602178 For spin-0 particles the answer is: No! Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi

  25. UV-IR connection (well known) 
 e.g. hep-th/0602178 For spin-0 particles the answer is: No! Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi 1 3 Analyticity, Crossing, and Unitarity M 4 2 4

  26. UV-IR connection (well known) 
 e.g. hep-th/0602178 For spin-0 particles the answer is: No! Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi 1 3 Analyticity, Crossing, and Unitarity M 4 2 4 Im s ˜ C C ● μ 2 Re s ● ● u IR =( m 1 - m 2 ) 2 s IR =( m 1 + m 2 ) 2 s - plane

  27. UV-IR connection (well known) 
 e.g. hep-th/0602178 For spin-0 particles the answer is: No! Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi 1 3 Analyticity, Crossing, and Unitarity M 4 2 4 small circle=big circle Im s ˜ C C ● μ 2 Re s ● ● u IR =( m 1 - m 2 ) 2 s IR =( m 1 + m 2 ) 2 s - plane

  28. UV-IR connection (well known) 
 e.g. hep-th/0602178 For spin-0 particles the answer is: No! Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi 1 3 Analyticity, Crossing, and Unitarity M 4 2 4 s ↔ u small circle=big circle Disc s = Disc u Im s ˜ C C ● μ 2 Re s ● ● u IR =( m 1 - m 2 ) 2 s IR =( m 1 + m 2 ) 2 s - plane

  29. UV-IR connection (well known) 
 e.g. hep-th/0602178 For spin-0 particles the answer is: No! Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi 1 3 Analyticity, Crossing, and Unitarity M 4 2 4 s ↔ u Disc ∼ s σ T ot ( s ) > 0 small circle=big circle Disc s = Disc u t=0 Im s ˜ C C ● μ 2 Re s ● ● u IR =( m 1 - m 2 ) 2 s IR =( m 1 + m 2 ) 2 s - plane

  30. UV-IR connection (well known) 
 e.g. hep-th/0602178 For spin-0 particles the answer is: No! Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi 1 3 Analyticity, Crossing, and Unitarity M 4 2 4 s ↔ u Disc ∼ s σ T ot ( s ) > 0 small circle=big circle Disc s = Disc u t=0 Im s ˜ C C ● Z 1 μ 2 ds � M 00 (2 → 2) IR = s 3 σ 12 ! anything ( s ) > 0 � Re s 0 ● ● u IR =( m 1 - m 2 ) 2 s IR =( m 1 + m 2 ) 2 IR-side UV-side E 4 -terms are strictly positive s - plane

  31. Example L = 1 2( ∂ µ π ) 2 + c Λ 4 ( ∂ µ π ) 4 + . . . π → π + const

  32. Example L = 1 2( ∂ µ π ) 2 + c Λ 4 ( ∂ µ π ) 4 + . . . π → π + const Z 1 ππ ! ππ ( s = 0) = 4 ds dispersion relation: M 00 s 3 σ ππ ! anything ( s ) > 0 π ππ → ππ 0 IR-side UV-side

  33. Example L = 1 2( ∂ µ π ) 2 + c Λ 4 ( ∂ µ π ) 4 + . . . π → π + const Z 1 ππ ! ππ ( s = 0) = 4 ds dispersion relation: M 00 s 3 σ ππ ! anything ( s ) > 0 π ππ → ππ 0 IR-side UV-side calculable within the EFT c > 0

  34. Example L = 1 2( ∂ µ π ) 2 + c Λ 4 ( ∂ µ π ) 4 + . . . π → π + const Z 1 ππ ! ππ ( s = 0) = 4 ds dispersion relation: M 00 s 3 σ ππ ! anything ( s ) > 0 π ππ → ππ 0 IR-side UV-side calculable within the EFT c > 0 This interacting theory can’t be softer than E 4

  35. Spinning Particles?

  36. Spinning Particles? (1) Amplitudes not Lorentz inv. but Little-group covariant

  37. Spinning Particles? (1) Amplitudes not Lorentz inv. but Little-group covariant 1 s, t, u α v σ u σ + polarizations α ε σ µ … (not amplitudes squared)

  38. Spinning Particles? (1) Amplitudes not Lorentz inv. but Little-group covariant σ 1 σ 3 α 1 1 1 3 s, t, u α v σ u σ u σ ) − 1 ( x = M 4 + polarizations α α αα 1 ε σ 2 4 µ … σ 4 σ 2 h Φ α 1 ( p 1 ) Φ β 1 ( p 2 ) . . . i (not amplitudes squared)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend