basis risk with random parameters
play

Basis risk with random parameters Michael Monoyios University of - PowerPoint PPT Presentation

Basis risk with random parameters Michael Monoyios University of Oxford Princeton University, 28 March, 2009 Michael Monoyios (University of Oxford) Basis risk with random parameters Princeton University, 28 March, 2009 1 / 45 Outline Basis


  1. Basis risk with random parameters Michael Monoyios University of Oxford Princeton University, 28 March, 2009 Michael Monoyios (University of Oxford) Basis risk with random parameters Princeton University, 28 March, 2009 1 / 45

  2. Outline Basis risk with random parameters 1 Exponential utility-based pricing and hedging Optimal hedging theorem The case Q E = Q M 2 Payoff decompositions and residual risk Asymptotic expansions Malliavin method for asymptotic expansion Lognormal basis risk with partial information 3 Restoring a full information model via filtering Exponential hedging with partial information 4 Numerical example of hedging performance Michael Monoyios (University of Oxford) Basis risk with random parameters Princeton University, 28 March, 2009 2 / 45

  3. Related literature Basis risk models: ◮ Davis [3], Henderson [5], MM [8, 9, 10], Musiela and Zariphopoulou [11], Ankirchner, Imkeller and Reis [1] Exponential utility maximisation with random endowment: ◮ Delbaen et al [4], Mania and Schweizer [7] Asymptotic analysis of utility-based prices for small numbers of claims: ◮ Kramkov and Sˆ ırbu [6] Partial information models: ◮ Rogers [13], Bj¨ ork, Davis and Land´ en [2] Michael Monoyios (University of Oxford) Basis risk with random parameters Princeton University, 28 March, 2009 3 / 45

  4. Random parameter basis risk model (Ω , F , P ), F := ( F t ) 0 ≤ t ≤ T ( S , Y ) = ( S t , Y t ) 0 ≤ t ≤ T dS t = σ S t S t ( λ S t dt + dB S dY t = σ Y t Y t ( λ Y t dt + dB Y t ) , t ) where � B Y = ρ t B S + 1 − ρ 2 t Z S , ρ t ∈ [ − 1 , 1] F -adapted parameters r = 0 σ S , σ Y , ρ also F -adapted Markovian model: ν t ≡ ν ( t , S t , Y t ), for ν ∈ { σ S , σ Y , λ S , λ Y , ρ } Claim C ( Y T ) ≥ 0, bounded, F T -measurable Michael Monoyios (University of Oxford) Basis risk with random parameters Princeton University, 28 March, 2009 4 / 45

  5. Exponential valuation and hedging Fot t ∈ [0 , T ], given X t = x , portfolio wealth process is � T � T π u ( λ S u du + dB S X u = x + θ u dS u = x + u ) , t ≤ u ≤ T t t where π := θ S . Denote by Θ (or Π) the set of admissible θ (or π ) U ( x ) := exp( − α x ) , x ∈ R , α > 0 Given ( X t , S t , Y t ) = ( x , s , y ), primal value function is u C ( t , x , s , y ) := sup E t , x , s , y [ U ( X T − C ( Y T ))] (1) π ∈ Π Indifference price p ( t , s , y ) defined by u C ( t , x + p ( t , s , y ) , s , y ) = u 0 ( t , x , s , y ) Denote optimal strategy for (1) by π C . Optimal hedging strategy π ( H ) defined by π ( H ) := π C − π 0 Michael Monoyios (University of Oxford) Basis risk with random parameters Princeton University, 28 March, 2009 5 / 45

  6. Entropy and admissibility P e := { Q ∼ P | S is a local ( Q , F )-martingale } P e , f := { Q ∈ P e | H ( Q , P ) < ∞} � = ∅ � dQ � dP log dQ (if finite, else H ( Q , P ) := ∞ ) H ( Q , P ) := E , dP For Q ∈ P e , f , define P -martingale Γ Q by � � t := dQ = E ( − λ S · B S − ψ · Z S ) , � Γ Q 0 ≤ t ≤ T � dP F t Admissible strategies Θ := { θ | ( θ · S ) is a ( Q , F )-martingale for all Q ∈ P e , f } Michael Monoyios (University of Oxford) Basis risk with random parameters Princeton University, 28 March, 2009 6 / 45

  7. Duality Dual value function � � � � η Γ Q − η Γ Q � T T u ( t , η, s , y ) := ˜ inf C ( Y T ) Q ∈ P e , f E t , s , y U Γ Q Γ Q t t where, for exponential utility � � η � � U = η � log − 1 α α Hence U ( η ) + η u ( t , η, s , y ) = � α H C ( t , s , y ) ˜ where � � � � Γ Q H C ( t , s , y ) := Q ∈ P e , f E Q T inf log − α C ( Y T ) t , s , y Γ Q t Primal and dual value functions conjugate, so primal problem has representation � � u C ( t , x , s , y ) = − exp − α x − H C ( t , s , y ) (2) Michael Monoyios (University of Oxford) Basis risk with random parameters Princeton University, 28 March, 2009 7 / 45

  8. Dual control problem � t � t B S , Q Z S , Q := B S λ S := Z S 0 ≤ t ≤ T t + u du , t + ψ u du , t t 0 0 ( ψ ≡ 0 corresponds to Q M ). Then, for Q ∈ P e , f , � T t , s , y log Γ Q � � 1 u ) 2 + ψ 2 E Q T = E Q ( λ S du < ∞ (3) t , s , y u Γ Q 2 t t Let Ψ denote set of ψ such that (3) is satisfied. Then H C is value function of stochastic control problem � � � T � � 1 u ) 2 + ψ 2 H C ( t , s , y ) := inf ψ ∈ Ψ E Q ( λ S du − α C ( Y T ) (4) t , s , y u 2 t where, under Q ∈ P e , f , state variables S , Y follow t S t dB S , Q σ S = dS t t � � � t ψ t ) dt + dB Y , Q σ Y ( λ Y t − ρ t λ S 1 − ρ 2 dY t = t Y t t − t � B Y , Q ρ t B S , Q t Z S , Q 1 − ρ 2 = + t t t Michael Monoyios (University of Oxford) Basis risk with random parameters Princeton University, 28 March, 2009 8 / 45

  9. Dual representation of indifference price For C ≡ 0, H 0 (0 , · , · ) = H ( Q E , P ) Write H 0 ( t , s , y ) ≡ H E ( t , s , y ), the “minimal entropy” value function. Then � � u 0 ( t , x , s , y ) = − exp − α x − H E ( t , s , y ) (5) Indifference price definition plus (2) and (5) give u C ( t , x , s , y ) = u 0 ( t , x , s , y ) exp ( α p ( t , s , y )) and indifference price has entropic representation − α p ( t , s , y ) = H C ( t , s , y ) − H E ( t , s , y ) Michael Monoyios (University of Oxford) Basis risk with random parameters Princeton University, 28 March, 2009 9 / 45

  10. Optimal hedging strategy Theorem Optimal hedge: hold θ ( H ) shares of S t at t ∈ [0 , T ] , where t � ∂ p � ∂ s ( t , S t , Y t ) + ρ ( t , S t , Y t ) σ Y ( t , S t , Y t ) Y t ∂ p θ ( H ) = ∂ y ( t , S t , Y t ) t σ S ( t , S t , Y t ) S t Remark Additional term p s ( t , S t , Y t ) compared with earlier studies. Partial information model of Section 3 is of this form, and p s ( t , S t , Y t ) reflects additional risk induced by parameter uncertainty. Michael Monoyios (University of Oxford) Basis risk with random parameters Princeton University, 28 March, 2009 10 / 45

  11. Proof. Use HJB equation associated with primal the value function ∂ u C A X , S , Y u C = 0 ∂ t + max π Compute optimal Markov control and use separable form (2) of value function, to obtain optimal strategy as π C t = π C ( t , S t , Y t ), where � � π C ( t , s , y ) = λ S s − α p s ) + ρσ Y σ S α − 1 s ( H E σ S y ( H E y − α p y ) α with similar form for C = 0. Apply definition of optimal hedging strategy: θ ( H ) S ≡ π ( H ) = π C − π 0 , to get result (Smoothness of value function proven using methods in Pham [12]) Michael Monoyios (University of Oxford) Basis risk with random parameters Princeton University, 28 March, 2009 11 / 45

  12. Stochastic control problem for p ( t , s , y ) when Q E = Q M Suppose λ S t ≡ λ S ( t , S t ), and σ S t ≡ σ S ( t , S t ) Then infimum in (4) for C = 0 is achieved by ψ = 0, so Q E = Q M and H 0 ( t , s , y ) = H E ( t , s ) is given by � � � T 1 H E ( t , s ) = E Q M ( λ S u ) 2 du t , s 2 t Indifference price p ( t , s , y ) has stochastic control representation � � � T C ( Y T ) − 1 E Q ψ 2 p ( t , s , y ) = sup u du t , s , y 2 α ψ ∈ Ψ t subject to state dynamics σ S ( t , S t ) S t dB S , Q dS t = t � � � σ Y ( λ Y t − ρ t λ S t ψ t ) dt + dB Y , Q 1 − ρ 2 dY t = t Y t t − t Michael Monoyios (University of Oxford) Basis risk with random parameters Princeton University, 28 March, 2009 12 / 45

  13. Indifference price PDE � 1 − ρ 2 σ Y yp y . HJB equation for p ( t , s , y ) is Define φ ( t , s , y ) = � � − 1 2 αψ 2 − φψ p t + A Q M S , Y p + max = 0 , p ( T , s , y ) = C ( y ) ψ Optimal Markov control is ψ C t ≡ ψ C ( t , S t , Y t ), where ψ C ( t , s , y ) = − αφ ( t , s , y ) Note that α → 0 ⇒ ψ C → ψ 0 = 0 Hence p solves semi-linear PDE S , Y p + 1 2 αφ 2 = 0 , p t + A Q M p ( T , s , y ) = C ( y ) For α → 0, obtain linear PDE for marginal price p M , and α → 0 p ( t , s , y ) = E Q M p M ( t , s , y ) := lim t , s , y C ( Y T ) Michael Monoyios (University of Oxford) Basis risk with random parameters Princeton University, 28 March, 2009 13 / 45

  14. Hedging error (residual risk) process � t θ ( H ) R t := p (0 , S 0 , Y 0 ) + dS u − p ( t , S t , Y t ) , R 0 = 0 , 0 ≤ t ≤ T u 0 Itˆ o and PDE for p ( t , s , y ) gives, with φ t ≡ φ ( t , S t , Y t ), dR t = 1 2 αφ 2 t dt − φ t dZ S t Define A t := − exp( − α R t ) , 0 ≤ t ≤ T Then A t = −E ( αφ · Z S ) t , 0 ≤ t ≤ T so A is a Q M -martingale (and also a P -martingale) Michael Monoyios (University of Oxford) Basis risk with random parameters Princeton University, 28 March, 2009 14 / 45

  15. Payoff decomposition and price representation Integrate SDE for R over [ t , T ] and use definition of R (equivalently, directly use Itˆ o and PDE for p ( t , s , y ) over [ t , T ]): � T � T � T C ( Y T ) = p ( t , S t , Y t ) − 1 φ 2 φ u dZ S θ ( H ) 2 α u du + u + dS u (6) u t t t Expectation under Q M given ( S t , Y t ) = ( s , y ) gives Lemma Indifference price satisfies � T p ( t , s , y ) = p M ( t , s , y ) + 1 2 α E Q M φ 2 ( u , S u , Y u ) du (7) t , s , y t with � t σ Y 1 − ρ 2 φ ( t , S t , Y t ) = t Y t p y ( t , S t , Y t ) , 0 ≤ t ≤ T Michael Monoyios (University of Oxford) Basis risk with random parameters Princeton University, 28 March, 2009 15 / 45

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend