basics and magnetic materials
play

BASICS AND MAGNETIC MATERIALS K.-H. Mller Institut fr Festkrper- - PowerPoint PPT Presentation

BASICS AND MAGNETIC MATERIALS K.-H. Mller Institut fr Festkrper- und Werkstoffforschung Dresden, POB 270116, D-01171 Dresden, Germany 1 INTRODUCTION 2 MAGNETIC MOMENT AND MAGNETIZATION 3 LOCALIZED ELECTRON MAGNETISM 4


  1. BASICS AND MAGNETIC MATERIALS K.-H. Müller Institut für Festkörper- und Werkstoffforschung Dresden, POB 270116, D-01171 Dresden, Germany 1 – INTRODUCTION 2 – MAGNETIC MOMENT AND MAGNETIZATION 3 – LOCALIZED ELECTRON MAGNETISM 4 – ANISOTROPY AND DIMENSIONALITY 5 – PHASE TRANSITIONS AND MAGNETIZATION PROCESSES

  2. History of magnetism • the names magnetism, magnets etc. go back to ancient Greeks: magnetite = loadstone (Fe 3 O 4 ) • The magnetism of magnetite was also known in ancient China - spoon-shaped compass 2000 years ago - long time used for geomancy - open-see navigation since 1100

  3. European traditions in magnetism • A. Neckham (1190): describes the compass • P. Peregrinus (1269): Epistola Petri Peregrini … de Magnete - terrella, poles • E.W. Gilbert (1544 – 1603) • R. Descartes (1569 – 1650) divorced physics from metaphysics de Magnete

  4. Modern developments in the 19th century H.C. Oersted (1777-1851) A.M. Ampère (1755-1836) M. Faraday (1791-1867) • electric currents are magnets • ∇ x H = j • magnetic field & • molecular currents • ∇ x E = - B J.C. Maxwell (1831-1871) H.A. Lorentz (1853-1928) = e + • unification of light, electricity, magnetism • v E v x B ( ) m & & • j → j + ε 0 • Lorentz transformation E • prediction of radio waves

  5. The revolutionary 20th century P. Curie (1859-1906) P. Weiss • the molecular field • paramagnetism and ferromagnetism • domains N. Bohr, W. Heisenberg, W. Pauli P. Dirac • quantum theory • relativistic quantum theory • the need of spin • explains the spin → exchange interaction ←

  6. Magnetism and magnetic materials in our daily life • earth's field • 50 permanent magnets in an average home • natural electromagnetic waves • up to 100 permanent magnets • TV in a modern car • portable phone • soft magnetic materials in power stations and motors and • telecommunication high frequency devices • home devices • traffic • medicine • information technology

  7. Magnetism and magnetic materials in our daily life • earth's field • 50 permanent magnets in an average home • natural electromagnetic waves • up to 100 permanent magnets • TV in a modern car • portable phone • soft magnetic materials in power stations and motors and • telecommunication high frequency devices • home devices • traffic • medicine • information technology

  8. Magnet materials – world market - in the late 20th century - all magnetic materials permanent magnet total 30B$ materials magnetic recording soft magnets others 53% 27% Nd-Fe-B ferrites 55% permanent magnets 30% 20%

  9. Fields in nature, engineering and science in Tesla Brain ; Intergalactic space 10 -13 Heart 10 -10 Galaxy 10 -9 urbanic noise 10 -6 …10 -8 Surface of earth 5·10 -5 near power cable (in home) 10 -4 Surface of sun 10 -2 surface of magnetite simple resistive coil 5·10 -1 10 -1 permanent magnets 1 supercond. permanent magnets 16 superconducting coils 20 high performance resistive coils 26 (stationary) hybrid magnets (resistive + supercond.) 40 long pulse coil (100ms) 60 short pulse coil (10 ms) 80 ≤ 10 2 Anisotropy fields in solids one-winding coil 3·10 2 ≤ 10 3 Exchange fields in solids explosive flux compression 3·10 3 Neutron stars 10 8

  10. 2 – Magnetic moment and magnetization 2-1 Magnetization in Maxwell's equations microscopic form of Maxwell's equ. magnetization M and polarization P = ρ − ∇ P r ∇ = ε + h e i x & ∇ h = 0 0 & = + ∇ + i j M P x & ∇ ε 0 = e ∇ x = − µ r e h 0 + ∇ = i r 0 & ⇒ & ∇ ε + = ρ ∇ − = ε + + e P ( ) x ( h M ) e P j & 0 0 ⇒ ≡ µ − ≡ µ H B M h B / / macroscopic fields 0 0 ⇒ e = ≡ ε + E D E P 0 macroscopic form of Maxwell's equ. & ∇ = + ∇ B = H D j x 0 & ∇ x = − µ E H ∇ D = ρ 0 ρ + ∇ = j 0 magnetic moment and magnetization ∫ ∫ ⇒ ∇ = −∇ ⇒ ≡ − τ ∇ = = τ H M m r M d M d K V V ⇒ M is a density of magnetic moments ≡ "magnetization"

  11. 2-2 Magnetic moment and angular momentum 1 ∫ ∫ = − τ ∇ = = τ ∇ m r M r M d ( ) d ( ) K x x 2 V V ∫ V e e e ⇒ = τ ρ = = m r v L L d g x m 2 2 2 m m m A. Einstein and W.J. de Haas (1915): g ≈ 2 (instead of 1)

  12. The spin of the electron and its g-factor A. Einstein and W.J. de Haas (1915) W. Gerlach and O. Stern (1922) Ag atoms scale ∂ B / ∂ z ≠ 0 z mirror iron bar G. Uhlenbeck and S. Goudsmit (1925) : atomic spectra at B ≠ 0 (Zeeman effect) S → ± ħ /2 g = 2 spin of the electron:

  13. 2-3 Quantization and relativity; diamagnetism = e + v E v x B ( ) m & H.A. Lorentz 2 B 2 e e = − + + + − λ ( 2 2 Dirac 's Hamiltonian ( L S ) B ( ) L S ) 2 x y H H 0 2 2 4 m m ⇒ m = < µ > = – ∂ < H >/ ∂ B M = N < µ > χ ij = µ 0 ∂ M i / ∂ B j = – µ 0 N ∂ 2 < H >/ ∂ B i ∂ B j diamagnetic susceptibility ( in 10 -6 ): H 2 O: –9, alcohol: –7.2

  14. Omnipresence of diamagnetism 0.9 0.8 Magnetization (a.u.) Brillouin function 0.7 0.6 0.5 0.4 0.3 Ho 2 @C 84 in a glass ampoule 0.2 T = 1.8 K 0.1 0.0 0 1 2 3 4 5 6 7 8 Magnetic field (T)

  15. Levitation of a diamagnetic body levitated glass cube melted by a laser beam • µ 0 H ≈ 23 Tesla • F ∼ χ ·H·(dH/dz) • stable only for χ < 0 M. Kitamura et al., Jpn. J. Appl. Phys. 39 (2000) L324

  16. Stable position of a superconducting permanent magnet Levitation Suspension Cross stiffness YBCO NdFeB • by varying the spatial distribution of the external field the position of the superconducting magnet may have different degrees of freedom : 0 D – as in the examples above 1 D – as a train on a rail • the same holds for rotational degrees of freedom

  17. 2-4 Magnetization in thermodynamics problems: (i) thermodynamically metastable states (ii) the field generated by the samples own magnetization (iii) how to define a correct expression for magnetic work • Quantum statistical thermodynamics with the Hamiltonian H ∫ τ < > = δ − µ = δ − µ m H M H d H Q d Q d d 0 0 V • alternative definition of internal energy U = < H > + µ 0 Hm (a Legendre transformation) ∫ τ = δ + µ = δ + µ H m H M dU Q d Q d d ⇒ 0 0 V ⇒ both expressions are correct: work done on different systems ! (iv) magnetostatic interaction is long range

  18. Magnetism in atoms and condensed matter Periodic System of Elements 1 2 H He 3 4 5 6 7 8 9 10 Li Be B C N O F Ne 11 12 13 14 15 16 17 18 Na Mg Al Si P S Cl Ar 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 55 56 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Cs Ba Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

  19. Magnetism in atoms and condensed matter Periodic System of Elements 1 2 H He 3 4 5 6 7 8 9 10 Li Be B C N O F Ne 11 12 13 14 15 16 17 18 Na Mg Al Si P S Cl Ar 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 55 56 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Cs Ba Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

  20. 2-5 Localized vs. itinerant electron magnetism in solids • isolated atoms or ions with incompletely filled electron shells • magnetization: M ∼ B J (H/T) ⇒ Curie 's law M = χ H χ = C/T with • Two main types of solids – large electron density ⇒ delocalized (itinerant) electrons – e.g. in Li- or Na-metal ⇒ Hund's rule magnetic moment disappears ⇒ a small, (nearly) temperature independent susceptibility – small electron densities ⇒ strongly correlated electrons ⇒ they can be localized and carry a magnetic moment ⇒ examples: MnO, FeO, CoO, CuO (antiferromagnets); EuO, CrCl 3 (ferromagnets ) • In 4f materials localized and itinerant electrons coexist

  21. 2-6 Itinerant electron magnetism • weakly interacting Landau quasiparticles 2 1 | | m h e χ = µ µ − 2 ( ) ( ) 2 E 1 µ = N with 0 B F 2 3 * B 2 m m ⇒ metals with large or moderate m * (e.g. Na: m / m * ≈ 1) are Pauli paramagnets, χ > 0 ⇒ those with small m * (e.g. Bi m / m * ≈ 10 2 ) are Landau diamagnets, χ < 0

  22. Susceptibility vs . temperature after M. Bozort 1951 10 -3 10 -4 MOLECULAR SUSCEPTIBILITY 10 -5 10 -6 -10 -6 -10 -5 -10 -4 -10 -3 -200 0 200 400 600 800 TEMPERATURE [°C]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend