baryon baryon interaction from constituent quark model

Baryon-baryon interaction from constituent quark model (Hadron - PowerPoint PPT Presentation

Baryon-baryon interaction from constituent quark model (Hadron Interactions and Polarization from Lattice QCD, Quark Model, and Heavy Ion Coillisions) Aaron Park (Theoretical Nuclear and Hadron Physics Group) Yonsei University 1. BB


  1. Baryon-baryon interaction from constituent quark model (Hadron Interactions and Polarization from Lattice QCD, Quark Model, and Heavy Ion Coillisions) Aaron Park (Theoretical Nuclear and Hadron Physics Group) Yonsei University

  2. 1. BB Interaction - collaborated with T. Hatsuda, T. Inoue, S. H. Lee 2. BBB Interaction - collaborated with S. H. Lee YITP HIPLQH2019

  3. Baryon-baryon interaction 1 4 2 3 5 6 ๐‘  โ†’ 0 YITP HIPLQH2019

  4. Baryon-baryon interaction 1 4 2 3 5 6 ๐‘  โ†’ 0 1 3 2 4 5 6 Dibaryon configuration YITP HIPLQH2019

  5. Baryon-baryon interaction baryon โŠ— baryon ๏ƒ  dibaryon YITP HIPLQH2019

  6. Baryon-baryon interaction in lattice QCD (SU(3) symmetric limit) HAL QCD Collaboration, Prog. Theo. Phys. 124 (2010) 591 YITP HIPLQH2019

  7. Baryon-baryon interaction in Quark Model baryon โŠ— baryon ๏ƒ  dibaryon Wave function = Orbital โŠ— Color โŠ— Flavor โŠ— Spin [6] ๐‘ƒ [222] ๐ท [33] ๐บ๐บ ๐‘’ โˆ— (2380) ฮฉฮฉ ๐ผ dibaryon ๐‘‚ฮฉ B. Silvestre-Brac and J. Leandri, Phys. Rev. D 45, 4221 (1992) YITP HIPLQH2019

  8. Flavor state of dibaryon ๐ผ -dibaryon : ๐บ 27 ๐บ 1 ๐‘‚ฮฉ : ๐บ 27 ๐บ 8 ๐‘’ โˆ— : ๐บ 10 ฮฉฮฉ : ๐บ 28 YITP HIPLQH2019

  9. Comparion with Lattice QCD In SU(3) symmetric case YITP HIPLQH2019

  10. Baryon-baryon interaction in lattice QCD (SU(3) broken) T. Inoue, QNP2018 conference YITP HIPLQH2019

  11. Hamiltonian : confinement potential : hyperfine potential YITP HIPLQH2019

  12. In SU(3) flavor symmetry breaking case We choose the following Jacobi coordinate and spatial part of the wave function satisfying [1234][56] symmetry. In order to satisfy the Pauli exclusion principle, we construct the remaining flavor- color-spin part of the wave function to satisfy {1234}{56} symmetry. YITP HIPLQH2019

  13. Additional kinetic energy ๏ƒ  Static binding potential 1 4 ๐‘ฆ 3 ๐‘ฆ 5 ๐‘ฆ 1 ๐‘ฆ 4 ๐‘ฆ 2 3 2 6 5 qqs+qqs : ฮ›ฮ› or ฮฃฮฃ qqq+qss : ๐‘‚ฮž YITP HIPLQH2019

  14. Color-spin interaction in SU(3) broken case YITP HIPLQH2019

  15. Color-spin interaction in SU(3) broken case ๐‘› ๐‘ฃ = ๐‘› ๐‘’ = 1 ๏ƒ  -24 ๏ƒ  8 ๏ƒ  8/3 ๏ƒ  8/3 ๏ƒ  -28/3 YITP HIPLQH2019

  16. Baryon-baryon interaction in Quark model YITP HIPLQH2019

  17. Comparison with Lattice QCD SU(3) symmetric case SU(3) broken case YITP HIPLQH2019

  18. Transformation coefficients S-wave orbital M. Harvey, Nucl. Phys. A 352, 301 (1981) YITP HIPLQH2019

  19. Transformation coefficients Baryon โŠ— baryon Dibaryon YITP HIPLQH2019

  20. Transformation coefficients and SU(3) isoscalar factors YITP HIPLQH2019

  21. Summary of BB interaction 1. We construct orbital-flavor-color-spin wave function of the dibaryon satisfying the Pauli exclusion principle. We estimate the baryon-baryon interaction in a compact multiquark configuration. 2. For both SU(3) flavor symmetric case and SU(3) flavor symmetry broken case, we conclude that our results show good agreement with lattice QCD results at short distance region. YITP HIPLQH2019

  22. 1. BB Interaction - collaborated with T. Hatsuda, T. Inoue, S. H. Lee 2. BBB Interaction - collaborated with S. H. Lee YITP HIPLQH2019

  23. Hyperon puzzle in neutron stars Massive ( 2 ๐‘ โจ€ ) neutron stars vs softening of EOS by hyperon mixing ๏ƒ  Hyperon puzzle YITP HIPLQH2019

  24. Hyperon puzzle in neutron stars Massive ( 2 ๐‘ โจ€ ) neutron stars vs softening of EOS by hyperon mixing ๏ƒ  Hyperon puzzle Y. Sakuragi, PTEP 2016 (2016) 06A106 D. Lonardoni et al, PRL 114, 092301 (2015) YITP HIPLQH2019

  25. Three-body interaction 1 1 2 3 2 3 1 2 3 YITP HIPLQH2019

  26. Three-body interaction 1 1 2 3 2 3 1 2 6 3 4 8 1 9 7 5 2 3 Tribaryon configuration YITP HIPLQH2019

  27. Orbital state of tribaryon 3 ร— 3 = 6 + 51 + 42 + [33] YITP HIPLQH2019

  28. Orbital state of tribaryon antisymmetric 3 ร— 3 = 6 + 51 + 42 + [33] symmetric YITP HIPLQH2019

  29. Orbital state of tribaryon In terms of baryon, there are four possibilities. YITP HIPLQH2019

  30. Color state of the tribaryon Wave function = Orbital โŠ— Color โŠ— Flavor โŠ— Spin [9] Meson Baryon Tetraquark Pentaquark Dibaryon Tribaryon Tetrabaryon # of color 1 1 2 3 5 42 462 basis YITP HIPLQH2019

  31. Flavor state of the tribaryon Wave function = Orbital โŠ— Color โŠ— Flavor โŠ— Spin [9] [333] Flavor and spin states of tribaryon : YITP HIPLQH2019

  32. Hyperfine potential SU(3) flavor symmetric limit ๐ฟ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข ๐ฟ ๐ถ1 + ๐ฟ ๐ถ2 + ๐ฟ ๐ถ3 ๏ƒ  YITP HIPLQH2019

  33. Hyperfine potential where ๐ท ๐ท๐บ is the constant that depend on the spatial part of the wave function, which we will take to be universal for all physical states composed of s-wave quarks. YITP HIPLQH2019

  34. Strangeness = โˆ’ 1 ฮ›๐‘‚๐‘‚ ฮฃ๐‘‚๐‘‚ โ‹ฎ YITP HIPLQH2019

  35. Strangeness = โˆ’ 2 ฮ›ฮ›๐‘‚ ฮ›ฮฃ๐‘‚ ฮฃฮฃ๐‘‚ ฮž๐‘‚๐‘‚ โ‹ฎ YITP HIPLQH2019

  36. S = โˆ’ 3 ฮ›ฮ›ฮ› ฮ›ฮ›ฮฃ ฮ›ฮฃฮฃ ฮžฮ›๐‘‚ ฮžฮฃ๐‘‚ โ‹ฎ YITP HIPLQH2019

  37. Strangeness = โˆ’ 4 ฮžฮ›ฮ› ฮžฮ›ฮฃ ฮžฮฃฮฃ ฮžฮž๐‘‚ โ‹ฎ YITP HIPLQH2019

  38. Strangeness = โˆ’ 5 ฮžฮžฮ› ฮžฮžฮฃ ฮฉฮ›ฮ› ฮฉฮž๐‘‚ โ‹ฎ YITP HIPLQH2019

  39. Strangeness = โˆ’ 6 ฮžฮžฮž ฮฉฮžฮ› ฮฉฮžฮฃ ฮฉฮฉ๐‘‚ โ‹ฎ YITP HIPLQH2019

  40. ๐ถ 1 ๐ถ 2 ๐ถ 3 ๐‘ˆ YITP HIPLQH2019

  41. ๐ถ 1 ๐ถ 2 ๐ถ 3 ๐ธ 1 ๐‘ˆ YITP HIPLQH2019

  42. ๐ถ 1 ๐ธ 2 ๐ถ 2 ๐ถ 3 ๐‘ˆ YITP HIPLQH2019

  43. ๐ถ 1 ๐ธ 3 ๐ถ 2 ๐ถ 3 ๐‘ˆ YITP HIPLQH2019

  44. ๐ถ 1 ๐ธ 2 ๐ธ 3 ๐ถ 2 ๐ถ 3 ๐ธ 1 ๐‘ˆ YITP HIPLQH2019

  45. Pure three-body force YITP HIPLQH2019

  46. Transformation coefficients Baryon โŠ— baryon Dibaryon YITP HIPLQH2019

  47. Transformation coefficients Tribaryon ๏ƒ  Baryon โŠ— Dibaryon YITP HIPLQH2019

  48. Transformation coefficients Tribaryon ๏ƒ  Baryon โŠ— Dibaryon Tribaryon Baryon โŠ— Dibaryon YITP HIPLQH2019

  49. Summary of BBB interaction 1. We have identified compact tribaryon configurations in terms of SU(3) flavor and spin quantum numbers that are allowed within the Pauli principle. 2. While compact configurations are possible for certain quantum numbers, we found that the color-spin interaction for all the allowed configurations are highly repulsive with respect to three baryon channel. 3. This is the microscopic proof that the three body nuclear force should be repulsive in all channels, which are consistent with the recently established neutron star mass limit. YITP HIPLQH2019

  50. Thank you YITP HIPLQH2019

Recommend


More recommend