augmented hilbert series of numerical semigroups
play

Augmented Hilbert series of numerical semigroups Christopher ONeill - PowerPoint PPT Presentation

Augmented Hilbert series of numerical semigroups Christopher ONeill University of California Davis coneill@math.ucdavis.edu Joint with *Jeske Glenn, Vadim Ponomarenko, and *Benjamin Sepanski. * = undergraduate student January 12, 2018


  1. Maximum and minimum factorization length Let S = � n 1 , . . . , n k � . For n ∈ S , M( n ) = max length m( n ) = min length Observations Max length factorization: lots of small generators Min length factorization: lots of large generators Example S = � 6 , 9 , 20 � : M(40) = 2 and Z(40) = { (0 , 0 , 2) } S = � 5 , 16 , 17 , 18 , 19 � : m(82) = 5 and Z(82) = { (0 , 3 , 2 , 0 , 0) , (5 , 0 , 0 , 0 , 3) , . . . } m(462) = 25 and Z(462) = { (0 , 3 , 2 , 0 , 20) , . . . } Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 4 / 19

  2. Maximum and minimum factorization length Let S = � n 1 , . . . , n k � . For n ∈ S , M( n ) = max length m( n ) = min length Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 5 / 19

  3. Maximum and minimum factorization length Let S = � n 1 , . . . , n k � . For n ∈ S , M( n ) = max length m( n ) = min length Theorem (Barron–O.–Pelayo, 2014) Let S = � n 1 , . . . , n k � . For n > n k ( n k − 1 − 1), M( n + n 1 ) = 1 + M( n ) m( n + n k ) = 1 + m( n ) Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 5 / 19

  4. Maximum and minimum factorization length Let S = � n 1 , . . . , n k � . For n ∈ S , M( n ) = max length m( n ) = min length Theorem (Barron–O.–Pelayo, 2014) Let S = � n 1 , . . . , n k � . For n > n k ( n k − 1 − 1), M( n + n 1 ) = 1 + M( n ) m( n + n k ) = 1 + m( n ) Equivalently: M( n ), m( n ) eventually quasilinear 1 M( n ) = n 1 n + a 0 ( n ) 1 m( n ) = n k n + b 0 ( n ) for periodic functions a 0 ( n ), b 0 ( n ). Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 5 / 19

  5. 10 7 6 8 5 6 4 3 4 2 2 1 10 20 30 40 50 60 10 20 30 40 50 60 Maximum and minimum factorization length Let S = � n 1 , . . . , n k � . For n > n k ( n k − 1 − 1), M( n ) = 1 m( n ) = 1 n 1 n + a 0 ( n ) n k n + b 0 ( n ) for periodic a 0 ( n ), b 0 ( n ). Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 6 / 19

  6. 10 7 6 8 5 6 4 3 4 2 2 1 10 20 30 40 50 60 10 20 30 40 50 60 Maximum and minimum factorization length Let S = � n 1 , . . . , n k � . For n > n k ( n k − 1 − 1), M( n ) = 1 m( n ) = 1 n 1 n + a 0 ( n ) n k n + b 0 ( n ) for periodic a 0 ( n ), b 0 ( n ). S = � 6 , 9 , 20 � : Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 6 / 19

  7. Maximum and minimum factorization length Let S = � n 1 , . . . , n k � . For n > n k ( n k − 1 − 1), M( n ) = 1 m( n ) = 1 n 1 n + a 0 ( n ) n k n + b 0 ( n ) for periodic a 0 ( n ), b 0 ( n ). S = � 6 , 9 , 20 � : 10 7 6 8 5 6 4 3 4 2 2 1 10 20 30 40 50 60 10 20 30 40 50 60 M( n ) : S → N m( n ) : S → N Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 6 / 19

  8. 6 5 4 3 2 1 20 40 60 80 100 Maximum and minimum factorization length Let S = � n 1 , . . . , n k � . For n > n k ( n k − 1 − 1), M( n ) = 1 m( n ) = 1 n 1 n + a 0 ( n ) n k n + b 0 ( n ) for periodic a 0 ( n ), b 0 ( n ). S = � 5 , 16 , 17 , 18 , 19 � : Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 7 / 19

  9. Maximum and minimum factorization length Let S = � n 1 , . . . , n k � . For n > n k ( n k − 1 − 1), M( n ) = 1 m( n ) = 1 n 1 n + a 0 ( n ) n k n + b 0 ( n ) for periodic a 0 ( n ), b 0 ( n ). S = � 5 , 16 , 17 , 18 , 19 � : 6 5 4 3 2 1 20 40 60 80 100 m( n ) : S → N Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 7 / 19

  10. Formal power series Recall from Calculus 2: 1 � t n = 1 + t + t 2 + t 3 + · · · 1 − t = n ≥ 0 Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 8 / 19

  11. Formal power series Recall from Calculus 2: 1 � t n = 1 + t + t 2 + t 3 + · · · 1 − t = n ≥ 0 Why? Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 8 / 19

  12. Formal power series Recall from Calculus 2: 1 � t n = 1 + t + t 2 + t 3 + · · · 1 − t = n ≥ 0 Why? Telescoping sums: 1 = (1 + t + t 2 + t 3 + · · · )(1 − t ). Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 8 / 19

  13. Formal power series Recall from Calculus 2: 1 � t n = 1 + t + t 2 + t 3 + · · · 1 − t = n ≥ 0 Why? Telescoping sums: 1 = (1 + t + t 2 + t 3 + · · · )(1 − t ). Proof is algebraic! No calculus needed! Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 8 / 19

  14. Formal power series Recall from Calculus 2: 1 � t n = 1 + t + t 2 + t 3 + · · · 1 − t = n ≥ 0 Why? Telescoping sums: 1 = (1 + t + t 2 + t 3 + · · · )(1 − t ). Proof is algebraic! No calculus needed! 1 � 2 n t n = 1 + 2 t + 4 t 2 + 8 t 3 + · · · 1 − 2 t = n ≥ 0 Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 8 / 19

  15. Formal power series Recall from Calculus 2: 1 � t n = 1 + t + t 2 + t 3 + · · · 1 − t = n ≥ 0 Why? Telescoping sums: 1 = (1 + t + t 2 + t 3 + · · · )(1 − t ). Proof is algebraic! No calculus needed! 1 � 2 n t n = 1 + 2 t + 4 t 2 + 8 t 3 + · · · 1 − 2 t = n ≥ 0 Calculus proof: substitution t � 2 t . Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 8 / 19

  16. Formal power series Recall from Calculus 2: 1 � t n = 1 + t + t 2 + t 3 + · · · 1 − t = n ≥ 0 Why? Telescoping sums: 1 = (1 + t + t 2 + t 3 + · · · )(1 − t ). Proof is algebraic! No calculus needed! 1 � 2 n t n = 1 + 2 t + 4 t 2 + 8 t 3 + · · · 1 − 2 t = n ≥ 0 Calculus proof: substitution t � 2 t . Algebraic proof: 1 = (1 + 2 t + 4 t 2 + 8 t 3 + · · · )(1 − 2 t ). Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 8 / 19

  17. Formal power series Recall from Calculus 2: 1 � t n = 1 + t + t 2 + t 3 + · · · 1 − t = n ≥ 0 Why? Telescoping sums: 1 = (1 + t + t 2 + t 3 + · · · )(1 − t ). Proof is algebraic! No calculus needed! 1 � 2 n t n = 1 + 2 t + 4 t 2 + 8 t 3 + · · · 1 − 2 t = n ≥ 0 Calculus proof: substitution t � 2 t . Algebraic proof: 1 = (1 + 2 t + 4 t 2 + 8 t 3 + · · · )(1 − 2 t ). 1 � ( n + 1) t n = 1 + 2 t + 3 t 2 + 4 t 3 + · · · (1 − t ) 2 = n ≥ 0 Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 8 / 19

  18. Formal power series Recall from Calculus 2: 1 � t n = 1 + t + t 2 + t 3 + · · · 1 − t = n ≥ 0 Why? Telescoping sums: 1 = (1 + t + t 2 + t 3 + · · · )(1 − t ). Proof is algebraic! No calculus needed! 1 � 2 n t n = 1 + 2 t + 4 t 2 + 8 t 3 + · · · 1 − 2 t = n ≥ 0 Calculus proof: substitution t � 2 t . Algebraic proof: 1 = (1 + 2 t + 4 t 2 + 8 t 3 + · · · )(1 − 2 t ). 1 � ( n + 1) t n = 1 + 2 t + 3 t 2 + 4 t 3 + · · · (1 − t ) 2 = n ≥ 0 Calculus proof: d dt [ − ] both sides. Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 8 / 19

  19. Formal power series Recall from Calculus 2: 1 � t n = 1 + t + t 2 + t 3 + · · · 1 − t = n ≥ 0 Why? Telescoping sums: 1 = (1 + t + t 2 + t 3 + · · · )(1 − t ). Proof is algebraic! No calculus needed! 1 � 2 n t n = 1 + 2 t + 4 t 2 + 8 t 3 + · · · 1 − 2 t = n ≥ 0 Calculus proof: substitution t � 2 t . Algebraic proof: 1 = (1 + 2 t + 4 t 2 + 8 t 3 + · · · )(1 − 2 t ). 1 � ( n + 1) t n = 1 + 2 t + 3 t 2 + 4 t 3 + · · · (1 − t ) 2 = n ≥ 0 Calculus proof: d dt [ − ] both sides. Algebraic proof: 1 = (1 − t ) 2 (1 + 2 t + 3 t 2 + 4 t 3 + · · · ) . Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 8 / 19

  20. Formal power series Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 9 / 19

  21. Formal power series General idea: Take an integer sequence a 0 , a 1 , a 2 , . . . you want to study Make them coefficients in a power series: a 0 + a 1 t + a 2 t 2 + · · · Use power series algebra to extract information Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 9 / 19

  22. Formal power series General idea: Take an integer sequence a 0 , a 1 , a 2 , . . . you want to study Make them coefficients in a power series: a 0 + a 1 t + a 2 t 2 + · · · Use power series algebra to extract information Classic Example Fibonacci numbers: 0 , 1 , 1 , 2 , 3 , 5 , 8 , 13 , . . . Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 9 / 19

  23. Formal power series General idea: Take an integer sequence a 0 , a 1 , a 2 , . . . you want to study Make them coefficients in a power series: a 0 + a 1 t + a 2 t 2 + · · · Use power series algebra to extract information Classic Example Fibonacci numbers: 0 , 1 , 1 , 2 , 3 , 5 , 8 , 13 , . . . f 0 = 0, f 1 = 1, f n = f n − 1 + f n − 2 for n ≥ 2 Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 9 / 19

  24. Formal power series General idea: Take an integer sequence a 0 , a 1 , a 2 , . . . you want to study Make them coefficients in a power series: a 0 + a 1 t + a 2 t 2 + · · · Use power series algebra to extract information Classic Example Fibonacci numbers: 0 , 1 , 1 , 2 , 3 , 5 , 8 , 13 , . . . f 0 = 0, f 1 = 1, f n = f n − 1 + f n − 2 for n ≥ 2 √ √ � � n � � n 1 1 + 5 − 1 1 − 5 f n = √ √ 2 2 5 5 Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 9 / 19

  25. Formal power series General idea: Take an integer sequence a 0 , a 1 , a 2 , . . . you want to study Make them coefficients in a power series: a 0 + a 1 t + a 2 t 2 + · · · Use power series algebra to extract information Classic Example Fibonacci numbers: 0 , 1 , 1 , 2 , 3 , 5 , 8 , 13 , . . . f 0 = 0, f 1 = 1, f n = f n − 1 + f n − 2 for n ≥ 2 √ √ � � n � � n 1 1 + 5 − 1 1 − 5 1 5 φ n − 1 5 φ − n f n = √ √ = √ √ 2 2 5 5 Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 9 / 19

  26. Formal power series General idea: Take an integer sequence a 0 , a 1 , a 2 , . . . you want to study Make them coefficients in a power series: a 0 + a 1 t + a 2 t 2 + · · · Use power series algebra to extract information Classic Example Fibonacci numbers: 0 , 1 , 1 , 2 , 3 , 5 , 8 , 13 , . . . f 0 = 0, f 1 = 1, f n = f n − 1 + f n − 2 for n ≥ 2 √ √ � � n � � n 1 1 + 5 − 1 1 − 5 1 5 φ n − 1 5 φ − n f n = √ √ = √ √ 2 2 5 5 � f n t n F ( t ) = n ≥ 0 Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 9 / 19

  27. Formal power series General idea: Take an integer sequence a 0 , a 1 , a 2 , . . . you want to study Make them coefficients in a power series: a 0 + a 1 t + a 2 t 2 + · · · Use power series algebra to extract information Classic Example Fibonacci numbers: 0 , 1 , 1 , 2 , 3 , 5 , 8 , 13 , . . . f 0 = 0, f 1 = 1, f n = f n − 1 + f n − 2 for n ≥ 2 √ √ � � n � � n 1 1 + 5 − 1 1 − 5 1 5 φ n − 1 5 φ − n f n = √ √ = √ √ 2 2 5 5 � � f n t n = 0 + t + ( f n − 1 + f n − 2 ) t n F ( t ) = n ≥ 0 n ≥ 2 Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 9 / 19

  28. Formal power series General idea: Take an integer sequence a 0 , a 1 , a 2 , . . . you want to study Make them coefficients in a power series: a 0 + a 1 t + a 2 t 2 + · · · Use power series algebra to extract information Classic Example Fibonacci numbers: 0 , 1 , 1 , 2 , 3 , 5 , 8 , 13 , . . . f 0 = 0, f 1 = 1, f n = f n − 1 + f n − 2 for n ≥ 2 √ √ � � n � � n 1 1 + 5 − 1 1 − 5 1 5 φ n − 1 5 φ − n f n = √ √ = √ √ 2 2 5 5 � � f n t n = 0 + t + ( f n − 1 + f n − 2 ) t n = t + tF ( t ) + t 2 F ( t ) F ( t ) = n ≥ 0 n ≥ 2 Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 9 / 19

  29. Formal power series General idea: Take an integer sequence a 0 , a 1 , a 2 , . . . you want to study Make them coefficients in a power series: a 0 + a 1 t + a 2 t 2 + · · · Use power series algebra to extract information Classic Example Fibonacci numbers: 0 , 1 , 1 , 2 , 3 , 5 , 8 , 13 , . . . f 0 = 0, f 1 = 1, f n = f n − 1 + f n − 2 for n ≥ 2 √ √ � � n � � n 1 1 + 5 − 1 1 − 5 1 5 φ n − 1 5 φ − n f n = √ √ = √ √ 2 2 5 5 � � f n t n = 0 + t + ( f n − 1 + f n − 2 ) t n = t + tF ( t ) + t 2 F ( t ) F ( t ) = n ≥ 0 n ≥ 2 t F ( t ) = 1 − t − t 2 Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 9 / 19

  30. Formal power series General idea: Take an integer sequence a 0 , a 1 , a 2 , . . . you want to study Make them coefficients in a power series: a 0 + a 1 t + a 2 t 2 + · · · Use power series algebra to extract information Classic Example Fibonacci numbers: 0 , 1 , 1 , 2 , 3 , 5 , 8 , 13 , . . . f 0 = 0, f 1 = 1, f n = f n − 1 + f n − 2 for n ≥ 2 √ √ � � n � � n 1 1 + 5 − 1 1 − 5 1 5 φ n − 1 5 φ − n f n = √ √ = √ √ 2 2 5 5 � � f n t n = 0 + t + ( f n − 1 + f n − 2 ) t n = t + tF ( t ) + t 2 F ( t ) F ( t ) = n ≥ 0 n ≥ 2 t t F ( t ) = 1 − t − t 2 = (1 − φ t )(1 − φ − 1 t ) Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 9 / 19

  31. Formal power series General idea: Take an integer sequence a 0 , a 1 , a 2 , . . . you want to study Make them coefficients in a power series: a 0 + a 1 t + a 2 t 2 + · · · Use power series algebra to extract information Classic Example Fibonacci numbers: 0 , 1 , 1 , 2 , 3 , 5 , 8 , 13 , . . . f 0 = 0, f 1 = 1, f n = f n − 1 + f n − 2 for n ≥ 2 √ √ � � n � � n 1 1 + 5 − 1 1 − 5 1 5 φ n − 1 5 φ − n f n = √ √ = √ √ 2 2 5 5 � � f n t n = 0 + t + ( f n − 1 + f n − 2 ) t n = t + tF ( t ) + t 2 F ( t ) F ( t ) = √ √ n ≥ 0 n ≥ 2 (1 − φ t )(1 − φ − 1 t ) = 1 / 5 1 / 5 t t F ( t ) = 1 − t − t 2 = 1 − φ t − 1 − φ − 1 t Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 9 / 19

  32. Formal power series General idea: Take an integer sequence a 0 , a 1 , a 2 , . . . you want to study Make them coefficients in a power series: a 0 + a 1 t + a 2 t 2 + · · · Use power series algebra to extract information Classic Example Fibonacci numbers: 0 , 1 , 1 , 2 , 3 , 5 , 8 , 13 , . . . f 0 = 0, f 1 = 1, f n = f n − 1 + f n − 2 for n ≥ 2 √ √ � � n � � n 1 1 + 5 − 1 1 − 5 1 5 φ n − 1 5 φ − n f n = √ √ = √ √ 2 2 5 5 � � f n t n = 0 + t + ( f n − 1 + f n − 2 ) t n = t + tF ( t ) + t 2 F ( t ) F ( t ) = √ √ n ≥ 0 n ≥ 2 (1 − φ t )(1 − φ − 1 t ) = 1 / 5 1 / 5 t t F ( t ) = 1 − t − t 2 = 1 − φ t − 1 − φ − 1 t 1 φ n t n − 1 � � φ − n t n = √ √ 5 5 n ≥ 0 n ≥ 0 Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 9 / 19

  33. Hilbert series Let S = � n 1 , . . . , n k � . The Hilbert series of S is the formal power series � t n H ( S ; t ) = n ∈ S Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 10 / 19

  34. Hilbert series Let S = � n 1 , . . . , n k � . The Hilbert series of S is the formal power series t n = f ( t ) � H ( S ; t ) = 1 − t n ∈ S Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 10 / 19

  35. Hilbert series Let S = � n 1 , . . . , n k � . The Hilbert series of S is the formal power series t n = f ( t ) � H ( S ; t ) = 1 − t n ∈ S Example: S = � 3 , 5 , 7 � Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 10 / 19

  36. Hilbert series Let S = � n 1 , . . . , n k � . The Hilbert series of S is the formal power series t n = f ( t ) � H ( S ; t ) = 1 − t n ∈ S Example: S = � 3 , 5 , 7 � H ( S ; t ) = 1 + t 3 + t 5 + t 6 + t 7 + t 8 + t 9 + · · · Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 10 / 19

  37. Hilbert series Let S = � n 1 , . . . , n k � . The Hilbert series of S is the formal power series t n = f ( t ) � H ( S ; t ) = 1 − t n ∈ S Example: S = � 3 , 5 , 7 � H ( S ; t ) = 1 + t 3 + t 5 + t 6 + t 7 + t 8 + t 9 + · · · 1 1 − t − t − t 2 − t 4 = Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 10 / 19

  38. Hilbert series Let S = � n 1 , . . . , n k � . The Hilbert series of S is the formal power series t n = f ( t ) � H ( S ; t ) = 1 − t n ∈ S Example: S = � 3 , 5 , 7 � H ( S ; t ) = 1 + t 3 + t 5 + t 6 + t 7 + t 8 + t 9 + · · · 1 − t − t − t 2 − t 4 = 1 − t + t 3 − t 4 + t 5 1 = 1 − t Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 10 / 19

  39. Hilbert series Let S = � n 1 , . . . , n k � . The Hilbert series of S is the formal power series t n = f ( t ) � H ( S ; t ) = 1 − t n ∈ S Example: S = � 3 , 5 , 7 � H ( S ; t ) = 1 + t 3 + t 5 + t 6 + t 7 + t 8 + t 9 + · · · 1 − t − t − t 2 − t 4 = 1 − t + t 3 − t 4 + t 5 1 = 1 − t Example: S = � 6 , 9 , 20 � Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 10 / 19

  40. Hilbert series Let S = � n 1 , . . . , n k � . The Hilbert series of S is the formal power series t n = f ( t ) � H ( S ; t ) = 1 − t n ∈ S Example: S = � 3 , 5 , 7 � H ( S ; t ) = 1 + t 3 + t 5 + t 6 + t 7 + t 8 + t 9 + · · · 1 − t − t − t 2 − t 4 = 1 − t + t 3 − t 4 + t 5 1 = 1 − t Example: S = � 6 , 9 , 20 � H ( S ; t ) = 1 + t 6 + t 9 + t 12 + t 15 + t 18 + t 20 + · · · = f ( t ) 1 − t Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 10 / 19

  41. Hilbert series Let S = � n 1 , . . . , n k � . The Hilbert series of S is the formal power series t n = f ( t ) � H ( S ; t ) = 1 − t n ∈ S Example: S = � 3 , 5 , 7 � H ( S ; t ) = 1 + t 3 + t 5 + t 6 + t 7 + t 8 + t 9 + · · · 1 − t − t − t 2 − t 4 = 1 − t + t 3 − t 4 + t 5 1 = 1 − t Example: S = � 6 , 9 , 20 � H ( S ; t ) = 1 + t 6 + t 9 + t 12 + t 15 + t 18 + t 20 + · · · = f ( t ) 1 − t f ( t ) = 1 − t + t 6 − t 7 + t 9 − t 10 + t 12 − t 13 + t 15 − t 16 + t 18 − t 19 + t 20 − t 22 + t 24 − t 25 + t 26 − t 28 + t 29 − t 31 + t 32 − t 34 + t 35 − t 37 + t 38 − t 43 + t 44 Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 10 / 19

  42. Hilbert series Let S = � n 1 , . . . , n k � . The Hilbert series of S is the formal power series t n = f ( t ) � H ( S ; t ) = 1 − t n ∈ S Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 11 / 19

  43. Hilbert series Let S = � n 1 , . . . , n k � . The Hilbert series of S is the formal power series t n = f ( t ) � H ( S ; t ) = 1 − t n ∈ S Example: S = � 3 , 5 , 7 � Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 11 / 19

  44. Hilbert series Let S = � n 1 , . . . , n k � . The Hilbert series of S is the formal power series t n = f ( t ) � H ( S ; t ) = 1 − t n ∈ S Example: S = � 3 , 5 , 7 � H ( S ; t ) = 1 − t + t 3 − t 4 + t 5 1 − t Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 11 / 19

  45. Hilbert series Let S = � n 1 , . . . , n k � . The Hilbert series of S is the formal power series t n = f ( t ) � H ( S ; t ) = 1 − t n ∈ S Example: S = � 3 , 5 , 7 � � � H ( S ; t ) = 1 − t + t 3 − t 4 + t 5 1 + t + t 2 1 + t + t 2 1 − t Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 11 / 19

  46. Hilbert series Let S = � n 1 , . . . , n k � . The Hilbert series of S is the formal power series t n = f ( t ) � H ( S ; t ) = 1 − t n ∈ S Example: S = � 3 , 5 , 7 � � � H ( S ; t ) = 1 − t + t 3 − t 4 + t 5 = 1 + t 5 + t 7 1 + t + t 2 1 + t + t 2 1 − t 3 1 − t Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 11 / 19

  47. Hilbert series Let S = � n 1 , . . . , n k � . The Hilbert series of S is the formal power series t n = f ( t ) � H ( S ; t ) = 1 − t n ∈ S Example: S = � 3 , 5 , 7 � � � H ( S ; t ) = 1 − t + t 3 − t 4 + t 5 = 1 + t 5 + t 7 1 + t + t 2 1 + t + t 2 1 − t 3 1 − t Example: S = � 6 , 9 , 20 � H ( S ; t ) = f ( t ) 1 − t Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 11 / 19

  48. Hilbert series Let S = � n 1 , . . . , n k � . The Hilbert series of S is the formal power series t n = f ( t ) � H ( S ; t ) = 1 − t n ∈ S Example: S = � 3 , 5 , 7 � � � H ( S ; t ) = 1 − t + t 3 − t 4 + t 5 = 1 + t 5 + t 7 1 + t + t 2 1 + t + t 2 1 − t 3 1 − t Example: S = � 6 , 9 , 20 � � � 1 + t + · · · + t 5 H ( S ; t ) = f ( t ) 1 + t + · · · + t 5 1 − t Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 11 / 19

  49. Hilbert series Let S = � n 1 , . . . , n k � . The Hilbert series of S is the formal power series t n = f ( t ) � H ( S ; t ) = 1 − t n ∈ S Example: S = � 3 , 5 , 7 � � � H ( S ; t ) = 1 − t + t 3 − t 4 + t 5 = 1 + t 5 + t 7 1 + t + t 2 1 + t + t 2 1 − t 3 1 − t Example: S = � 6 , 9 , 20 � � � = 1 + t 9 + t 20 + t 29 + t 40 + t 49 1 + t + · · · + t 5 H ( S ; t ) = f ( t ) 1 + t + · · · + t 5 1 − t 6 1 − t Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 11 / 19

  50. Hilbert series Let S = � n 1 , . . . , n k � . The Hilbert series of S is the formal power series t n = f ( t ) � H ( S ; t ) = 1 − t n ∈ S Example: S = � 3 , 5 , 7 � � � H ( S ; t ) = 1 − t + t 3 − t 4 + t 5 = 1 + t 5 + t 7 1 + t + t 2 1 + t + t 2 1 − t 3 1 − t Example: S = � 6 , 9 , 20 � � � = 1 + t 9 + t 20 + t 29 + t 40 + t 49 1 + t + · · · + t 5 H ( S ; t ) = f ( t ) 1 + t + · · · + t 5 1 − t 6 1 − t Ap( S ) = { 0 , 9 , 20 , 29 , 40 , 49 } , the set of minimal elements modulo n 1 = 6. Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 11 / 19

  51. Hilbert series Let S = � n 1 , . . . , n k � . The Hilbert series of S is the formal power series t n = f ( t ) � H ( S ; t ) = 1 − t n ∈ S Example: S = � 3 , 5 , 7 � � � H ( S ; t ) = 1 − t + t 3 − t 4 + t 5 = 1 + t 5 + t 7 1 + t + t 2 1 + t + t 2 1 − t 3 1 − t Example: S = � 6 , 9 , 20 � � � = 1 + t 9 + t 20 + t 29 + t 40 + t 49 1 + t + · · · + t 5 H ( S ; t ) = f ( t ) 1 + t + · · · + t 5 1 − t 6 1 − t Ap( S ) = { 0 , 9 , 20 , 29 , 40 , 49 } , the set of minimal elements modulo n 1 = 6. For 2 mod 6: { 2 , 8 , 14 , 20 , 26 , 32 , . . . } ∩ S = { 20 , 26 , 32 , . . . } Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 11 / 19

  52. Hilbert series Let S = � n 1 , . . . , n k � . The Hilbert series of S is the formal power series t n = f ( t ) � H ( S ; t ) = 1 − t n ∈ S Example: S = � 3 , 5 , 7 � � � H ( S ; t ) = 1 − t + t 3 − t 4 + t 5 = 1 + t 5 + t 7 1 + t + t 2 1 + t + t 2 1 − t 3 1 − t Example: S = � 6 , 9 , 20 � � � = 1 + t 9 + t 20 + t 29 + t 40 + t 49 1 + t + · · · + t 5 H ( S ; t ) = f ( t ) 1 + t + · · · + t 5 1 − t 6 1 − t Ap( S ) = { 0 , 9 , 20 , 29 , 40 , 49 } , the set of minimal elements modulo n 1 = 6. For 2 mod 6: { 2 , 8 , 14 , 20 , 26 , 32 , . . . } ∩ S = { 20 , 26 , 32 , . . . } For 3 mod 6: { 3 , 9 , 15 , 21 , . . . } ∩ S = { 9 , 15 , 21 , . . . } Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 11 / 19

  53. Hilbert series Let S = � n 1 , . . . , n k � . The Hilbert series of S is the formal power series t n = f ( t ) � H ( S ; t ) = 1 − t n ∈ S Example: S = � 3 , 5 , 7 � � � H ( S ; t ) = 1 − t + t 3 − t 4 + t 5 = 1 + t 5 + t 7 1 + t + t 2 1 + t + t 2 1 − t 3 1 − t Example: S = � 6 , 9 , 20 � � � = 1 + t 9 + t 20 + t 29 + t 40 + t 49 1 + t + · · · + t 5 H ( S ; t ) = f ( t ) 1 + t + · · · + t 5 1 − t 6 1 − t Ap( S ) = { 0 , 9 , 20 , 29 , 40 , 49 } , the set of minimal elements modulo n 1 = 6. For 2 mod 6: { 2 , 8 , 14 , 20 , 26 , 32 , . . . } ∩ S = { 20 , 26 , 32 , . . . } For 3 mod 6: { 3 , 9 , 15 , 21 , . . . } ∩ S = { 9 , 15 , 21 , . . . } For 4 mod 6: { 4 , 10 , 16 , 22 , . . . } ∩ S = { 40 , 46 , 52 , . . . } Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 11 / 19

  54. Hilbert series Let S = � n 1 , . . . , n k � . The Hilbert series of S is the formal power series t n = f ( t ) � H ( S ; t ) = 1 − t n ∈ S Example: S = � 3 , 5 , 7 � � � H ( S ; t ) = 1 − t + t 3 − t 4 + t 5 = 1 + t 5 + t 7 1 + t + t 2 1 + t + t 2 1 − t 3 1 − t Example: S = � 6 , 9 , 20 � � � = 1 + t 9 + t 20 + t 29 + t 40 + t 49 1 + t + · · · + t 5 H ( S ; t ) = f ( t ) 1 + t + · · · + t 5 1 − t 6 1 − t Ap( S ) = { 0 , 9 , 20 , 29 , 40 , 49 } , the set of minimal elements modulo n 1 = 6. For 2 mod 6: { 2 , 8 , 14 , 20 , 26 , 32 , . . . } ∩ S = { 20 , 26 , 32 , . . . } For 3 mod 6: { 3 , 9 , 15 , 21 , . . . } ∩ S = { 9 , 15 , 21 , . . . } For 4 mod 6: { 4 , 10 , 16 , 22 , . . . } ∩ S = { 40 , 46 , 52 , . . . } Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 11 / 19

  55. Hilbert series Let S = � n 1 , . . . , n k � . The Hilbert series of S is the formal power series t n = f ( t ) � H ( S ; t ) = 1 − t n ∈ S Example: S = � 3 , 5 , 7 � � � H ( S ; t ) = 1 − t + t 3 − t 4 + t 5 = 1 + t 5 + t 7 1 + t + t 2 1 + t + t 2 1 − t 3 1 − t Example: S = � 6 , 9 , 20 � � � = 1 + t 9 + t 20 + t 29 + t 40 + t 49 1 + t + · · · + t 5 H ( S ; t ) = f ( t ) 1 + t + · · · + t 5 1 − t 6 1 − t Ap( S ) = { 0 , 9 , 20 , 29 , 40 , 49 } , the set of minimal elements modulo n 1 = 6. For 2 mod 6: { 2 , 8 , 14 , 20 , 26 , 32 , . . . } ∩ S = { 20 , 26 , 32 , . . . } For 3 mod 6: { 3 , 9 , 15 , 21 , . . . } ∩ S = { 9 , 15 , 21 , . . . } For 4 mod 6: { 4 , 10 , 16 , 22 , . . . } ∩ S = { 40 , 46 , 52 , . . . } Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 11 / 19

  56. Hilbert series Let S = � n 1 , . . . , n k � . The Hilbert series of S is the formal power series t n = f ( t ) � H ( S ; t ) = 1 − t n ∈ S Example: S = � 3 , 5 , 7 � � � H ( S ; t ) = 1 − t + t 3 − t 4 + t 5 = 1 + t 5 + t 7 1 + t + t 2 1 + t + t 2 1 − t 3 1 − t Example: S = � 6 , 9 , 20 � � � = 1 + t 9 + t 20 + t 29 + t 40 + t 49 1 + t + · · · + t 5 H ( S ; t ) = f ( t ) 1 + t + · · · + t 5 1 − t 6 1 − t Ap( S ) = { 0 , 9 , 20 , 29 , 40 , 49 } , the set of minimal elements modulo n 1 = 6. For 2 mod 6: { 2 , 8 , 14 , 20 , 26 , 32 , . . . } ∩ S = { 20 , 26 , 32 , . . . } For 3 mod 6: { 3 , 9 , 15 , 21 , . . . } ∩ S = { 9 , 15 , 21 , . . . } For 4 mod 6: { 4 , 10 , 16 , 22 , . . . } ∩ S = { 40 , 46 , 52 , . . . } t 9 1 − t 6 = t 9 (1 + t 6 + t 12 + t 18 + · · · ) Key: Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 11 / 19

  57. Hilbert series Let S = � n 1 , . . . , n k � . Theorem If Ap( S ) = { a 0 , a 1 , . . . } , then the Hilbert series of S can be written as t n = t a 0 + t a 1 + · · · � H ( S ; t ) = 1 − t n 1 n ∈ S Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 12 / 19

  58. Hilbert series Let S = � n 1 , . . . , n k � . Theorem If Ap( S ) = { a 0 , a 1 , . . . } , then the Hilbert series of S can be written as t n = t a 0 + t a 1 + · · · � H ( S ; t ) = 1 − t n 1 n ∈ S Same power series, new look! Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 12 / 19

  59. Hilbert series Let S = � n 1 , . . . , n k � . Theorem If Ap( S ) = { a 0 , a 1 , . . . } , then the Hilbert series of S can be written as t n = t a 0 + t a 1 + · · · � H ( S ; t ) = 1 − t n 1 n ∈ S Same power series, new look! Key idea: different algebraic expression uncovers additional information. Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 12 / 19

  60. Hilbert series Let S = � n 1 , . . . , n k � . Theorem If Ap( S ) = { a 0 , a 1 , . . . } , then the Hilbert series of S can be written as t n = t a 0 + t a 1 + · · · � H ( S ; t ) = 1 − t n 1 n ∈ S Same power series, new look! Key idea: different algebraic expression uncovers additional information. Digging deeper: Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 12 / 19

  61. Hilbert series Let S = � n 1 , . . . , n k � . Theorem If Ap( S ) = { a 0 , a 1 , . . . } , then the Hilbert series of S can be written as t n = t a 0 + t a 1 + · · · � H ( S ; t ) = 1 − t n 1 n ∈ S Same power series, new look! Key idea: different algebraic expression uncovers additional information. Digging deeper: for S = � 6 , 9 , 20 � , H ( S ; t ) = 1 + t 9 + t 20 + t 29 + t 40 + t 49 1 − t 6 Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 12 / 19

  62. Hilbert series Let S = � n 1 , . . . , n k � . Theorem If Ap( S ) = { a 0 , a 1 , . . . } , then the Hilbert series of S can be written as t n = t a 0 + t a 1 + · · · � H ( S ; t ) = 1 − t n 1 n ∈ S Same power series, new look! Key idea: different algebraic expression uncovers additional information. Digging deeper: for S = � 6 , 9 , 20 � , � � H ( S ; t ) = 1 + t 9 + t 20 + t 29 + t 40 + t 49 (1 − t 9 )(1 − t 20 ) 1 − t 6 (1 − t 9 )(1 − t 20 ) Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 12 / 19

  63. Hilbert series Let S = � n 1 , . . . , n k � . Theorem If Ap( S ) = { a 0 , a 1 , . . . } , then the Hilbert series of S can be written as t n = t a 0 + t a 1 + · · · � H ( S ; t ) = 1 − t n 1 n ∈ S Same power series, new look! Key idea: different algebraic expression uncovers additional information. Digging deeper: for S = � 6 , 9 , 20 � , � � H ( S ; t ) = 1 + t 9 + t 20 + t 29 + t 40 + t 49 (1 − t 9 )(1 − t 20 ) 1 − t 6 (1 − t 9 )(1 − t 20 ) 1 − t 18 − t 60 + t 78 = (1 − t 6 )(1 − t 9 )(1 − t 20 ) Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 12 / 19

  64. Hilbert series 1 − t 18 − t 60 + t 78 For S = � 6 , 9 , 20 � : H ( S ; t ) = (1 − t 6 )(1 − t 9 )(1 − t 20 ) What is special about 18 , 60 , 78 ∈ S ? Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 13 / 19

  65. Hilbert series 1 − t 18 − t 60 + t 78 For S = � 6 , 9 , 20 � : H ( S ; t ) = (1 − t 6 )(1 − t 9 )(1 − t 20 ) What is special about 18 , 60 , 78 ∈ S ? “Minimal relations between gens” Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 13 / 19

  66. Hilbert series 1 − t 18 − t 60 + t 78 For S = � 6 , 9 , 20 � : H ( S ; t ) = (1 − t 6 )(1 − t 9 )(1 − t 20 ) What is special about 18 , 60 , 78 ∈ S ? “Minimal relations between gens” ( a 1 , a 2 , a 3 ) ∈ Z( n ) n = 6 a 1 + 9 a 2 + 20 a 3 � Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 13 / 19

  67. Hilbert series 1 − t 18 − t 60 + t 78 For S = � 6 , 9 , 20 � : H ( S ; t ) = (1 − t 6 )(1 − t 9 )(1 − t 20 ) What is special about 18 , 60 , 78 ∈ S ? “Minimal relations between gens” ( a 1 , a 2 , a 3 ) ∈ Z( n ) n = 6 a 1 + 9 a 2 + 20 a 3 � Z(18): Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 13 / 19

  68. Hilbert series 1 − t 18 − t 60 + t 78 For S = � 6 , 9 , 20 � : H ( S ; t ) = (1 − t 6 )(1 − t 9 )(1 − t 20 ) What is special about 18 , 60 , 78 ∈ S ? “Minimal relations between gens” ( a 1 , a 2 , a 3 ) ∈ Z( n ) n = 6 a 1 + 9 a 2 + 20 a 3 � Z(18): Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 13 / 19

  69. Hilbert series 1 − t 18 − t 60 + t 78 For S = � 6 , 9 , 20 � : H ( S ; t ) = (1 − t 6 )(1 − t 9 )(1 − t 20 ) What is special about 18 , 60 , 78 ∈ S ? “Minimal relations between gens” ( a 1 , a 2 , a 3 ) ∈ Z( n ) n = 6 a 1 + 9 a 2 + 20 a 3 � Z(18): Z(60): Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 13 / 19

  70. Hilbert series 1 − t 18 − t 60 + t 78 For S = � 6 , 9 , 20 � : H ( S ; t ) = (1 − t 6 )(1 − t 9 )(1 − t 20 ) What is special about 18 , 60 , 78 ∈ S ? “Minimal relations between gens” ( a 1 , a 2 , a 3 ) ∈ Z( n ) n = 6 a 1 + 9 a 2 + 20 a 3 � Z(18): Z(60): Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 13 / 19

  71. Hilbert series 1 − t 18 − t 60 + t 78 For S = � 6 , 9 , 20 � : H ( S ; t ) = (1 − t 6 )(1 − t 9 )(1 − t 20 ) What is special about 18 , 60 , 78 ∈ S ? “Minimal relations between gens” ( a 1 , a 2 , a 3 ) ∈ Z( n ) n = 6 a 1 + 9 a 2 + 20 a 3 � Z(18): Z(60): Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 13 / 19

  72. Hilbert series 1 − t 18 − t 60 + t 78 For S = � 6 , 9 , 20 � : H ( S ; t ) = (1 − t 6 )(1 − t 9 )(1 − t 20 ) What is special about 18 , 60 , 78 ∈ S ? “Minimal relations between gens” ( a 1 , a 2 , a 3 ) ∈ Z( n ) n = 6 a 1 + 9 a 2 + 20 a 3 � Z(18): Z(60): Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 13 / 19

  73. Hilbert series 1 − t 18 − t 60 + t 78 For S = � 6 , 9 , 20 � : H ( S ; t ) = (1 − t 6 )(1 − t 9 )(1 − t 20 ) What is special about 18 , 60 , 78 ∈ S ? “Minimal relations between gens” ( a 1 , a 2 , a 3 ) ∈ Z( n ) n = 6 a 1 + 9 a 2 + 20 a 3 � Z(18): Z(60): Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 13 / 19

  74. Hilbert series 1 − t 18 − t 60 + t 78 For S = � 6 , 9 , 20 � : H ( S ; t ) = (1 − t 6 )(1 − t 9 )(1 − t 20 ) What is special about 18 , 60 , 78 ∈ S ? “Minimal relations between gens” ( a 1 , a 2 , a 3 ) ∈ Z( n ) n = 6 a 1 + 9 a 2 + 20 a 3 � Z(18): Z(60): Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 13 / 19

  75. Hilbert series 1 − t 18 − t 60 + t 78 For S = � 6 , 9 , 20 � : H ( S ; t ) = (1 − t 6 )(1 − t 9 )(1 − t 20 ) What is special about 18 , 60 , 78 ∈ S ? “Minimal relations between gens” ( a 1 , a 2 , a 3 ) ∈ Z( n ) n = 6 a 1 + 9 a 2 + 20 a 3 � Z(18): Z(60): Z(78): Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 13 / 19

  76. Hilbert series 1 − t 18 − t 60 + t 78 For S = � 6 , 9 , 20 � : H ( S ; t ) = (1 − t 6 )(1 − t 9 )(1 − t 20 ) What is special about 18 , 60 , 78 ∈ S ? “Minimal relations between gens” ( a 1 , a 2 , a 3 ) ∈ Z( n ) n = 6 a 1 + 9 a 2 + 20 a 3 � Z(18): Z(60): Z(78): Christopher O’Neill (UC Davis) Augmented Hilbert series January 12, 2018 13 / 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend