audio declipping
play

Audio declipping Matthieu Kowalski Univ Paris-Sud L2S (GPI) - PowerPoint PPT Presentation

Introduction Direct model Inverse problem Numerical results Audio declipping Matthieu Kowalski Univ Paris-Sud L2S (GPI) Matthieu Kowalski Audio declipping 1 / 22 Introduction Direct model Inverse problem Numerical results Introduction


  1. Introduction Direct model Inverse problem Numerical results Audio declipping Matthieu Kowalski Univ Paris-Sud L2S (GPI) Matthieu Kowalski Audio declipping 1 / 22

  2. Introduction Direct model Inverse problem Numerical results Introduction 1 Direct model 2 Inverse problem 3 Numerical results 4 Matthieu Kowalski Audio declipping 2 / 22

  3. Introduction Direct model Inverse problem Numerical results Audio Declipping Original signal: 1 0.5 0 -0.5 -1 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Time (s) Matthieu Kowalski Audio declipping 3 / 22

  4. Introduction Direct model Inverse problem Numerical results Audio Declipping Clipped signal: 1 0.5 0 -0.5 -1 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Time (s) Matthieu Kowalski Audio declipping 4 / 22

  5. Introduction Direct model Inverse problem Numerical results Audio Declipping 1 0.8 0.6 0.4 0.2 0 −0.2 −0.4 −0.6 −0.8 −1 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Goal: Can we get a good estimation of the original signal (blue) from the clipped one (red) ? Matthieu Kowalski Audio declipping 5 / 22

  6. Introduction Direct model Inverse problem Numerical results Reliable vs Unreliable coeff. y r = M r y Original s (unknown) Observation y 10000000000000000   01000000000000000   00100000000000000     00001000000000000     M r = 00000100000000000     00000010000000000     00000000010000000 M r     00000000001000000     00000000000000100   Degradation 00000000000000010 00010000000000000   00000001000000000   00000000100000000 M m   M m =   00000000000100000     00000000000010000     00000000000001000   00000000000000001 Reliable data y m = M m y Unreliable data Missing data to be estimated Matthieu Kowalski Audio declipping 6 / 22

  7. Introduction Direct model Inverse problem Numerical results Reliable vs Unreliable coeff. Reliable samples: y r = M r y 1 0.5 0 -0.5 -1 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Time (s) Matthieu Kowalski Audio declipping 7 / 22

  8. Introduction Direct model Inverse problem Numerical results Reliable vs Unreliable coeff. Unreliable (clipped) samples: y m = M m y 1 0.5 0 -0.5 -1 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Time (s) Matthieu Kowalski Audio declipping 8 / 22

  9. Introduction Direct model Inverse problem Numerical results Reliable vs Unreliable coeff. Reliable + Unreliable (clipped) samples: 1 0.5 0 -0.5 -1 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Time (s) Matthieu Kowalski Audio declipping 9 / 22

  10. Introduction Direct model Inverse problem Numerical results Audio inpainting: forward problem [A. Adler, V. Emiya et Al ] We have then: y r = M r y = M r s where s ∈ R N is the unknown “clean” signal; y r ∈ R M are the “reliable” sample of the observed signal M r ∈ R M × N is the matrix of the reliable support of x we can also define the ”missing” samples as y m = M m y = M m s Matthieu Kowalski Audio declipping 10 / 22

  11. Introduction Direct model Inverse problem Numerical results Inverse problem: data term Using the reliable coefficients, we must have y r = M r s where M r select the reliable samples. We can use a simple ℓ 2 loss 1 2 � y r − M r s � 2 s = argmin ˆ 2 s We must take the clipped samples into account Matthieu Kowalski Audio declipping 11 / 22

  12. Introduction Direct model Inverse problem Numerical results Inverse problem: clipping constraints For audio declipping, we can add the following constraint 1 2 � y r − M r s � 2 ˆ s = argmin 2 s M m + Φ α > θ clip s.t. M m − Φ α < − θ clip where M m + (resp. M m − ) select the positive (resp. negative) clipped samples. θ clip is the clip threshold (here θ clip = 0 . 2) Problem: infinite solutions! We must add some constraints on s Matthieu Kowalski Audio declipping 12 / 22

  13. Introduction Direct model Inverse problem Numerical results Audio declipping: use a dictionnary Let Φ a dictionnary such that: s = Φ α where α are sparse synthesis coefficients Audio signal: use the short time Fourier transform � s ( t ) = Φ α = α n , f ϕ n , f ( t ) n , f 4 2.2x 10 2 1.8 1.6 Frequency (Hz) 1.4 1.2 1 0.8 0.6 0.4 0.2 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 Time (s) Matthieu Kowalski Audio declipping 13 / 22

  14. Introduction Direct model Inverse problem Numerical results Inverse problem: a constrained sparse problem Using the dictionnary Φ + sparsity 1 2 � y r − M r Φ α � 2 α = argmin ˆ 2 + λ � α � 1 s M m + Φ α > θ clip s.t. M m − Φ α < − θ clip where M m + (resp. M m − ) select the positive (resp. negative) clipped samples. θ clip is the clip threshold (here θ clip = 0 . 2) ˆ s = ˆ α Problems: the proximity operator has no closed form Cannot use simple algorithms such as (F)ISTA Matthieu Kowalski Audio declipping 14 / 22

  15. Introduction Direct model Inverse problem Numerical results Rewrite the constraints Idea: use a ℓ 2 loss on the clipped samples if the constraint is not respected If y m ( t ) > θ clip then L ( θ clip − y m ( t )) = 0 y m ( t ) < θ clip If ˆ else L ( θ clip − y m ( t )) = ( θ clip − y m ( t )) 2 25 20 15 10 5 0 -5 -4 -3 -2 -1 0 1 2 3 4 5 Matthieu Kowalski Audio declipping 15 / 22

  16. Introduction Direct model Inverse problem Numerical results Rewrite the constraints The squared hinge loss: L ( θ clip − y m ) = [ θ clip − y m ] 2 + ( θ clip − y m ( t )) 2 ( − θ clip + y m ( t )) 2 � � = + + + t : y m ( t ) > 0 t : y m ( t ) < 0 = [ θ clip − M m Φ α ] 2 + 25 20 15 10 5 0 -5 -4 -3 -2 -1 0 1 2 3 4 5 Matthieu Kowalski Audio declipping 16 / 22

  17. Introduction Direct model Inverse problem Numerical results Audio declipping: (convex unconstrained) inverse problem We consider the following unconstrained convex problem: 1 2 + 1 2[ θ clip − M m Φ α ] 2 2 � y r − M r Φ α � 2 α = argmin + + λ � α � 1 α which is under the form f 1 ( α ) + f 2 ( α ) with f 1 Lipschitz-differentiable and f 2 semi-convex. We can apply (relaxed)-ISTA directly ! Matthieu Kowalski Audio declipping 17 / 22

  18. Introduction Direct model Inverse problem Numerical results FISTA for declipping Matthieu Kowalski Audio declipping 18 / 22

  19. Introduction Direct model Inverse problem Numerical results Thresolding operators Matthieu Kowalski Audio declipping 19 / 22

  20. Introduction Direct model Inverse problem Numerical results Numerical results Speech @ 16kHz Music @ 16kHz 18 11 L 10 Average SNR m Improvement Average SNR m Improvement 16 EW WGL 9 14 PEW 8 HT 12 OMP 7 10 6 5 8 4 6 3 4 2 2 1 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Clipping Level Clipping Level Average SNR miss for 10 speech (left) and music (right) signals over different clipping levels and operators. Neighborhoods extend 3 and 7 coefficients in time for speech and music signals, respectively. Matthieu Kowalski Audio declipping 20 / 22

  21. Introduction Direct model Inverse problem Numerical results Numerical results: zoom on reconstructions 0.8 0.6 0.4 Amplitude 0.2 0 Original −0.2 PEW EW −0.4 L WGL −0.6 HT OMP −0.8 4230 4235 4240 4245 4250 4255 Time in ms Declipped music signal using different operators for clip level θ clip = 0 . 2 using the Lasso, WGL, EW, PEW, HT, and OMP operators. Neighborhood size for WGL and PEW was 7. Matthieu Kowalski Audio declipping 21 / 22

  22. Introduction Direct model Inverse problem Numerical results Original Vs clipped Vs declipped Signal 0.8 0.6 0.4 0.2 0 − 0.2 − 0.4 − 0.6 − 0.8 0 1 2 3 4 5 1 0.5 0 − 0.5 − 1 0 1 2 3 4 5 Matthieu Kowalski Audio declipping 22 / 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend