attractor identification and quantification in
play

Attractor identification and quantification in asynchronous discrete - PowerPoint PPT Presentation

Attractor identification and quantification in asynchronous discrete dynamics Nuno D. Mendes 2 , 3 Pedro T. Monteiro 1 , 3 Jorge Carneiro 1 Elisabeth Remy 4 Claudine Chaouiya 1 1 Instituto Gulbenkian de Ci encia, Oeiras, PT 2 Instituto de


  1. Attractor identification and quantification in asynchronous discrete dynamics Nuno D. Mendes 2 , 3 Pedro T. Monteiro 1 , 3 Jorge Carneiro 1 Elisabeth Remy 4 Claudine Chaouiya 1 1 Instituto Gulbenkian de Ciˆ encia, Oeiras, PT 2 Instituto de Biologia Experimental T´ ecnologica, Oeiras, PT 3 INESC-ID, Lisboa, PT 4 Institut de Math´ ematiques de Luminy, Marseille, FR 3rd CoLoMoTo meeting, Lausanne, Switzerland April 18, 2014

  2. Outline 1 Introduction 2 Methods 3 Results 4 Conclusions and Prospects 1

  3. Background Discrete modelling: logical formalism (Thomas and d’Ari, Biological Feedback 1989) 2

  4. Background Discrete modelling: logical formalism (Thomas and d’Ari, Biological Feedback 1989) Logical regulatory graph (LRG) R = ( G , K ) G = { g i } i =0 ,..., n is a set of regulatory components Max : G → N ∗ associates a maximum level M i to each component g i S = � g i ∈G D i : is the state space, where D i = { 0 , . . . , Max ( g i ) } ∀ g i : K i : S → D i is the regulatory function specifying the behaviour of g i 2

  5. Background Discrete modelling: logical formalism (Thomas and d’Ari, Biological Feedback 1989) Logical regulatory graph (LRG) R = ( G , K ) G = { g i } i =0 ,..., n is a set of regulatory components Max : G → N ∗ associates a maximum level M i to each component g i S = � g i ∈G D i : is the state space, where D i = { 0 , . . . , Max ( g i ) } ∀ g i : K i : S → D i is the regulatory function specifying the behaviour of g i State transition graph (STG) The dynamic behaviour of an LRG, is represented by an STG where: nodes are states in S and arcs ( v , w ) ∈ S 2 denote transitions between states 2

  6. Background: Toy example (Boolean) K 0 ( v ) = 1 if v 0 = 1 ∨ v 1 = 0 ∨ v 2 = 1 K 1 ( v ) = 1 if v 0 = 0 ∨ v 2 = 0 K 2 ( v ) = 1 if v 0 = 1 ∧ v 1 = 1 3

  7. Background: Toy example (Boolean) K 0 ( v ) = 1 if v 0 = 1 ∨ v 1 = 0 ∨ v 2 = 1 K 1 ( v ) = 1 if v 0 = 0 ∨ v 2 = 0 K 2 ( v ) = 1 if v 0 = 1 ∧ v 1 = 1 g 2 g 0 g 1 3

  8. Background: Toy example (Boolean) K 0 ( v ) = 1 if v 0 = 1 ∨ v 1 = 0 ∨ v 2 = 1 K 1 ( v ) = 1 if v 0 = 0 ∨ v 2 = 0 K 2 ( v ) = 1 if v 0 = 1 ∧ v 1 = 1 011 111 g 2 010 110 = ⇒ g 0 g 1 001 101 000 100 3

  9. Problem Attractors Correspond to asymptotic behaviours where: all gene levels are maintained Stable state long-lasting oscillating behaviour Complex attractor 011 111 010 110 001 101 000 100 4

  10. Problem Attractors Correspond to asymptotic behaviours where: all gene levels are maintained Stable state long-lasting oscillating behaviour Complex attractor Trajectories quantification The weighted number of trajectories towards an attractor represents the structural biases of the STG Hidden assumption: successor states are equiprobable This assumption can easily be modified introducing weights 011 111 010 110 001 101 000 100 4

  11. Problem Attractors Correspond to asymptotic behaviours where: all gene levels are maintained Stable state long-lasting oscillating behaviour Complex attractor Trajectories quantification The weighted number of trajectories towards an attractor represents the structural biases of the STG Hidden assumption: successor states are equiprobable This assumption can easily be modified introducing weights 011 111 010 110 Central question What is the likelihood of reaching an attractor from a 001 101 given portion of the state space? 000 100 4

  12. Problem Objective Given a (set of) initial condition(s) and, optionally, a (set of) attractor(s), quantify the trajectories towards the attractor(s) Identify/characterize unknown attractor(s) 5

  13. Problem Objective Given a (set of) initial condition(s) and, optionally, a (set of) attractor(s), quantify the trajectories towards the attractor(s) Identify/characterize unknown attractor(s) Size of the State Transition Graphs # States # Components Boolean 3-valued 3 8 27 10 1 024 59 049 20 1 048 576 3 486 784 401 30 1 073 741 824 205 891 132 094 649 40 1 099 511 627 776 12 157 665 459 056 928 801 5

  14. Problem Objective Given a (set of) initial condition(s) and, optionally, a (set of) attractor(s), quantify the trajectories towards the attractor(s) Identify/characterize unknown attractor(s) Size of the State Transition Graphs # States # Components Boolean 3-valued 3 8 27 10 1 024 59 049 20 1 048 576 3 486 784 401 30 1 073 741 824 205 891 132 094 649 40 1 099 511 627 776 12 157 665 459 056 928 801 Challenge Combinatorial explosion! 5

  15. Outline 1 Introduction 2 Methods 3 Results 4 Conclusions and Prospects 6

  16. Attractor characterization approaches Without STG exploration Using OMDDs (Naldi et al. , CMSB 2007) Using SAT (de Jong and Page, IEEE/ACM Trans. Comp. Biol. Bioinf. 2008) Using reduction techniques and network motifs (Za˜ nudo and Albert, PLoS One 2013) With full (reachable) STG exploration Using ROBDDs (Garg et al. , RECOMB 2007) Using HTG (B´ erengier et al. , Chaos 2013) 7

  17. Attractor characterization approaches Without STG exploration Using OMDDs (Naldi et al. , CMSB 2007) Using SAT (de Jong and Page, IEEE/ACM Trans. Comp. Biol. Bioinf. 2008) Using reduction techniques and network motifs (Za˜ nudo and Albert, PLoS One 2013) With full (reachable) STG exploration Using ROBDDs (Garg et al. , RECOMB 2007) Using HTG (B´ erengier et al. , Chaos 2013) FireFront (Mendes, Monteiro et al. , ECCB 2014 submitted) 7

  18. Attractor characterization approaches Without STG exploration Using OMDDs (Naldi et al. , CMSB 2007) Using SAT (de Jong and Page, IEEE/ACM Trans. Comp. Biol. Bioinf. 2008) Using reduction techniques and network motifs (Za˜ nudo and Albert, PLoS One 2013) With full (reachable) STG exploration Using ROBDDs (Garg et al. , RECOMB 2007) Using HTG (B´ erengier et al. , Chaos 2013) FireFront (Mendes, Monteiro et al. , ECCB 2014 submitted) Monte Carlo simulations Boolnet (M¨ ussel et al. , Bioinformatics 2010) 7

  19. Attractor characterization approaches Without STG exploration Using OMDDs (Naldi et al. , CMSB 2007) Using SAT (de Jong and Page, IEEE/ACM Trans. Comp. Biol. Bioinf. 2008) Using reduction techniques and network motifs (Za˜ nudo and Albert, PLoS One 2013) With full (reachable) STG exploration Using ROBDDs (Garg et al. , RECOMB 2007) Using HTG (B´ erengier et al. , Chaos 2013) FireFront (Mendes, Monteiro et al. , ECCB 2014 submitted) Monte Carlo simulations Boolnet (M¨ ussel et al. , Bioinformatics 2010) Avatar (Mendes, Monteiro et al. , ECCB 2014 submitted) 7

  20. Attractor characterization approaches Without STG exploration Using OMDDs (Naldi et al. , CMSB 2007) Using SAT (de Jong and Page, IEEE/ACM Trans. Comp. Biol. Bioinf. 2008) Using reduction techniques and network motifs (Za˜ nudo and Albert, PLoS One 2013) With full (reachable) STG exploration Using ROBDDs (Garg et al. , RECOMB 2007) Using HTG (B´ erengier et al. , Chaos 2013) FireFront (Mendes, Monteiro et al. , ECCB 2014 submitted) Monte Carlo simulations Boolnet (M¨ ussel et al. , Bioinformatics 2010) Avatar (Mendes, Monteiro et al. , ECCB 2014 submitted) Trajectory characterization approach: MaBoSS (Stoll et al. , BMC Syst Biol 2012) 7

  21. Approach: Quasi-exact ( FireFront algorithm) Intuition Explore the STG from an initial condition Divide and carry probability to successor states Accumulate probability in states with no successors – stable states Do not explore states with probability below α The algorithm maintains 3 state sets: F – the current firefront N – the set of neglected states A – the set of attractors 8

  22. Approach: Quasi-exact ( FireFront algorithm) 1 α = max iterations = 10 16 Start exploration from given initial condition v 1 , with unitary probability v 1 1 Iteration = 1 F = { v 1 } v 5 v 4 v 2 v 7 N = ∅ A = ∅ v 6 v 3 v 8 9

  23. Approach: Quasi-exact ( FireFront algorithm) 1 α = max iterations = 10 16 Carry probability to successors dividing it by the number of successors – current firefront v 1 Iteration = 2 F = { v 2 , v 5 } 1 v 5 v 4 1 v 2 v 7 N = ∅ 2 2 A = ∅ v 6 v 3 v 8 9

  24. Approach: Quasi-exact ( FireFront algorithm) 1 α = max iterations = 10 16 States with no successors are attractors and accumulate probability v 1 Iteration = 3 F = { v 3 , v 4 , v 6 } v 5 v 4 1 v 2 v 7 1 4 4 N = ∅ A = { v 7 } v 6 v 3 v 8 1 4 1 4 9

  25. Approach: Quasi-exact ( FireFront algorithm) 1 α = max iterations = 10 16 States with no successors are attractors and accumulate probability v 1 1 8 Iteration = 4 F = { v 1 , v 3 , v 4 , v 6 } v 5 v 4 1 v 2 v 7 1 8 4 N = ∅ A = { v 7 , v 8 } v 6 v 3 v 8 1 1 8 8 1 4 9

  26. Approach: Quasi-exact ( FireFront algorithm) 1 α = max iterations = 10 16 States with no successors are attractors and accumulate probability v 1 1 16 Iteration = 5 F = { v 1 , v 2 , v 3 , v 4 , v 5 , v 6 } 1 v 5 v 4 1 1 v 2 v 7 1 16 8 16 4 N = ∅ A = { v 7 , v 8 } v 6 v 3 v 8 1 1 16 4 1 8 9

  27. Approach: Quasi-exact ( FireFront algorithm) 1 α = max iterations = 10 16 States accumulate probability given by multiple predecessor states States with probability below α are moved to a special set – neglected states – and are no longer explored v 1 1 16 Iteration = 6 F = { v 1 , v 2 , v 3 , v 4 , v 6 } 1 v 5 v 4 3 1 v 2 v 7 9 32 32 16 32 N = { v 5 } A = { v 7 , v 8 } v 6 v 3 v 8 3 5 32 16 1 16 9

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend